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Preface

Wolfram Liebermeister

How can a cell maintain itself as a living being? Living cells, shaped by billions of years of evolution, have

developed many ways to adapt to their environment, for example, by regulation of gene expression. But

the rules of physics and chemistry enforce certain boundaries on what cells can achieve and how they

can allocate their own resources. Shaped by evolution, cells “do certain things right”, and computational

models of cells often assume that this ”doing something right” can be described by evoking optimality

principles. The goal of this book is to uncover some of these governing principles. Although biological

optimality is often contested for good reasons, theories based on economic principles can explain many

observations (about cell growth or the usage of cellular resources) much better than purely mechanistic

models. Methods such as Flux Balance Analysis are well established, but the idea of resource allocation is

gaining ground, andmetaphors like ”currencymetabolites” or ”energy budget” are common in cell biology.

Optimality principles are often applied ad hoc, and a coherent picture in which many single observations

or models would have their place is still missing. This book - a free and open textbook to which anyone is

invited to contribute - gives an overview of established approaches to ”cellular economics”, from descrip-

tions of simple metabolic systems to cell growth, variability, and dynamic behavior.

Compared to non-living matter, living organisms have some very specific abilities. How can a tiny cell

maintain itself, while a cloud fades away? How can it grow and divide, how can it make copies of itself? Or

in other words, what does it take to be alive? There is no special “life force”; what makes matter alive is

its microscopic structure or molecular organization. Living matter follows the laws of physics. However,

to understand life, physics alone is not enough! On the one hand, living beings are complex at many

levels of organization, from biomolecules to cells, body, population, and ecosystem. Each of these levels

follows its own laws, but in some cases, a change on the lowest level, a point mutation, may change the

fate of a population. On the other hand, living systems do not just exist as they are, but have been shaped

by billions of years of evolution. This is also why some of their features look like they were perfectly

engineered. Since we do not know – and certainly cannot always consider – evolution in its entirety, we

often use ”optimality” as a shortcut. To explain a biological feature, like the shape of dolphins, we might

tell all the story of dolphin evolution and how changes in shape appeared and some were conserved. But

instead, we may simply say: this is the shape that functions best, and apparently evolution, by mutation

and selection, converged to this shape.

In this book, we mostly focus on microbes, and how they function internally: what compounds they need

to produce, and how, in order to live and self-replicate. We can describe this at three different levels. Level

1, the ’inventory’ of a cell, from amolecular point of view, consists of molecules and biochemical reactions,

which form a complex chemical network. Level 2, the dynamics of molecule concentrations, is determined

by physical laws like the conservation of mass and by specific biochemical regulation mechanisms, for ex-

amplemolecular recognition. But there is also a third level, concerning the function (or possibly optimality)

of these dynamics, for which economicmetaphors are appropriate. Given a limited ”protein budget”, what

biochemical pathways should a cell prioritize to thrive, grow, and survive? In this book, we focus on the

third layer, the ”economy of the cell”, which, in fact, encompasses the previous two.
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Figure 1: Protein abundances in the yeast Saccharomyces cerevisiae. Measured amounts of different sorts
of proteins are shown as areas, proteins of related functions are arranged into larger regions, shown by
colors. Why does the cell invest such a large fraction of their protein budget into the glycolysis pathway?
Such economic questions are central in this book.

What do wemean by the ”economy of the cell”? Economic theory is, of course, vast and only a small bit of it

hasmade its way into biology so far. In this book, by ”economy” wemean primarily resource allocation and

scheduling problems: What is the best allocation of protein resources in a bacterial cell (see the graphic

above)? How should photosynthetic bacteria adjust these investments during the day-night cycle? Our

answers to such questions, also in this book, are often based on an underlying assumption of optimality.

But often we simply consider all the constraints under which a cell needs to act and figure out what cellular

behaviors are possible.

As we look at cells from the perspective of resource allocation, we will neglect other aspects: we will rarely

talk about regulation (e.g. themechanisms for regulation of gene expression), and evenmore rarely about

gene or protein sequences. Instead, we assume that certain mechanisms are in place in the cell, and that

molecules encoded by sequences exist, and either ask why (that is, for what functional reason) they are the

way the are, or what the cell can do with them to perform certain tasks. This often means that we assume

a mechanistic system with possible ’choices’ (among flux profiles, expression levels, enzyme parameters,

etc.) and ask, first, what choices exist (considering all the constraints) and, second, how profitable these

choices are for the cell (assuming certain objectives). While we are hardly concerned with genetics, we are

certainly interested in howoptimalitymay arise fromevolution - to connect the two, we need to think about

fitness (how long-term fitness can be defined and how it gives rise to “momentary” or “local” optimization

objectives in a given part of the cell).

The source of inspiration for the book and the questions (discussions) that motivated the investigation of

the various mechanisms the cell uses to allocate resources in themost efficient way possible were a series

of events in formal settings such as an annual summer workshop, the monthly online Forum ”Economic

principles in cell physiology”, andmore informal hackathons. The development of the book is an endeavor

that is truly global in scope, drawing on the expertise and integrating the contributions of scientists who

weremembers of a global network (formed a global community) representing research institutions located

in more than a dozen countries on three continents. Those who contributed to the creation of the book

recognize that the success they achieved in bringing it to a satisfactory conclusion is due, in no small part,

to the support of the institutions with which they are affiliated and are grateful to INRAE, the Learning

Planet Institute Paris, and the home institutions of all other authors (as well as the taxpayers who finance

these institutions) who encouraged the creation of the book by providing its authors and contributors with
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the time and space necessary to sustain its development and achieve its completion.

Finally, why did we choose to write this textbook as a collaborative, open book? Publishing with a com-

mercial publisher has several downsides, most of which reflect a clash of interests between publishers,

authors, and readers. We wish to write this book as a community for the community. Many colleagues

were and are involved, and we would be glad to welcome you as part of the team! If you would like to

join for writing, reviewing chapters, designing graphics, or discussing new ideas, please have a look at our

website and get in touch.
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Overview of the book

Getting started

What is this book about?

In biology, the ”economy of the cell” has become increasingly central as a way of understanding cells. In

particular, it has been used as a perspective on metabolic states, the allocation of protein resources in

cells, and the interplay between production processes and cell growth. In this book, we focus on diverse

biological topics of interest and, where possible, use economic analogies to show that, much like in human

economics, balance and resource management are crucial for cells. The “economy of the cell” is based on,

and is a part of, systems biology, a branch of biology that is typically concerned with networks, large cell

biological data sets, and dynamic models.

Functional thinking – as opposed to describing cellsmechanistically, as physical objects – is fundamental to

biology. In biology, the notion of ”function” is justified by the fact that organisms emerged from evolution

– that is, as a result of mutation and selection – where completely ”nonfunctional” solutions are probably

being selected against. Evolution itself is an open-ended process and does not entail any simple criterion

for ”optimality”. Since selection depends on changing environments, and since environments themselves

can be shaped by organisms, there is no simple, general criterion for Darwinian fitness (except for the fact,

post hoc, that a species managed to survive over a long period of time). However, if we look at the end

result – an evolved species, or an evolved trait in microbes, for example, how cells allocate their resources

– and assume that this species evolved in a constant environment, it is tempting (and, as we argue here,

meaningful) to describe this result by optimality approaches or economic thinking. Hence, it is not by

chance that some cell models bear strong resemblances with economic models.

Since bringing systems biology and economics together is overdue and there are no books focused on

the intersection of these two fields, although there are books on systems biology from an ’economics’

perspective, we decided to write a textbook covering basic knowledge about production processes in cells,

their regulation, and their description in terms of resource allocation or costs and benefits.

Who is this book for?

The book focuses on the application of economic principles to cell biology, providing readers with a quan-

titative framework to understand how cells allocate resources, optimize processes, and make trade-offs.

The topic of this book has emerged from the field of systems biology, and accordingly, we address stu-

dents and researchers in related fields with a background in biology, physics, engineering, or math who

want to explore this interdisciplinary field. For students, the textbook offers a structured introduction to

the economic principles that govern cellular behavior, starting with basic concepts and advancing to more

complex models. For researchers, it provides an overview of the current literature, helping those in re-

lated fields quickly grasp key ideas and approaches in this area of study. For readers without a biological

background, we recommend the book “Cell biology by the numbers” (book.bionumbers.org), which takes

the reader on a journey through various aspects of cell biology.

5
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Mathematics Biology/Biochemistry
ODE, optimization problems,
probability, matrix operations
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biochemical reactions

Physics
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Figure 2: Background knowledge and modeling in this book – Many topics in this book are presented via
mathematical models. Models can capture and structure knowledge from biology, chemistry and physics
in a mathematical formulation. As a “simplified replica” of reality, they highlight certain aspects of cells
that we would like to describe and make them amenable to analysis. In the book, most models either
describe cell metabolism (as a whole, or parts of it) or a growing cell as a whole. Aside from the basic
description of steady states (in metabolism) or steady growth states (of cells), the book captures some
advanced topics related to cell behavior in time, in cell communities, in uncertain environments, or aspects
of spatial structure.

Our aim is tomake this book accessible to asmany people as possible by ensuring that the concepts are ac-

cessible to everyone, covering both beginner and advanced topics, andby offering it as a free resource. The

book and its individual chapters canbedownloaded fromourwebsite https://principlescellphysiology.

org/book-economic-principles/. A new version is released every three months and since the project is

still ongoing, the text will be improved edition by edition.

A guide to the book

Chapters overview

A main topic of this book is resource allocation in cells. Focusing on metabolism, we can ask, more specif-

ically, about (potentially optimal) configurations of fluxes, protein concentrations, and metabolite concen-

trations. This question may be given in a simplified form, e.g. as a choice of fluxes under constraints (in

Flux Balance Analysis models) or an allocation of a finite protein budget to cellular tasks (as in whole-cell

models). But the overall aim behind this is to describe an entire growing cell. If we simplify this again by

looking at parts of a cell (e.g. considering small-molecule metabolism only) or looking at ”low resolution”

(i.e. considering only a few global variables), this leads to different modeling approaches which we explore

in this book.

The reader will learn how economic principles such as optimization, resource allocation, and trade-offs

can be applied to cellular biology. The chapters are organized to guide the reader from basic concepts

to more advanced applications. The book covers foundational topics first and then progresses to more

specialized areas, including how to develop and analyze models that explain how cells manage resources

and optimize their internal processes. By the end of the book, the readers will have a solid understanding

of how economic principles can be used to analyze and model cellular behavior.

The book chapters are related to a number of larger topics, as shown in Figure 3.

1. The functioning of cells - After the introductory chapter 1, “The cell as a factory”, you will find two chap-

ters with background information about cells and their metabolism. Chapter 2, “An inventory of cell

components” describes the main components of a cell, their functions, and their typical abundances in

a cell. In a self-replicating cell, these are the components that need to be reproducedwhile also acting as

https://principlescellphysiology.org/book-economic-principles/
https://principlescellphysiology.org/book-economic-principles/
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Figure 3: Topics of the book shown as the branches of a tree, and book chapters shown as fruit – The first
chapters provide background knowledge, represented by the roots of the tree. In the following chapters
we explain different modeling approaches that focus on different aspects, represented by the tree’s trunk.
In the chapters on metabolism and on cell models, we assume steady (growth) states and move step by
step towards more complex models (resource allocation in cells), shown as the first line of branches of the
tree. Finally, we consider more specific aspects such as time, variability, and space, as higher branches of
our tree. The numbers in the figure indicate chapters (for chapter titles see text).

the ”materials” and ”machines” that make reproduction possible. Chapter 3, “Cell metabolism”, focuses

onmetabolic reactions and pathways and shows how chemical conversions depend on enzyme kinetics

and reaction thermodynamics. Readers familiar with cell biology and metabolic models may skip these

two chapters.

2. Metabolism - The following four chapters concernmetabolic models, starting withmodels focusing only

onmetabolic fluxes (chapters 4, “Metabolic flux distributions”, and 5, “Optimization of metabolic fluxes”)

and then continuing with models that consider enzyme kinetic rate laws to link metabolic production to

enzyme demand. Chapter 6, “The enzyme cost of metabolic fluxes” assumes that (desired) metabolic

fluxes are given and asks howmuch enzyme is needed to support them, and howmetabolite concentra-

tions should be chosen tominimize this enzyme demand. Chapter 7, “Optimization ofmetabolic states”,

combines these aspects and presents a general way to determine optimal metabolic fluxes, metabolite

concentrations, and enzyme levels at the same time. At the end of these chapters, you will have learned

what arrangements of fluxes and concentrations make cell metabolism maximally efficient, that is, al-

lowing to produce a maximal amount of product at a limited enzyme capacity.

3. Cell models - In the following two chapters, we consider the cell as a whole. Chapter 8, “Principles of

cell growth”, describes what a system, the cell, needs to do in order to replicate, and what internal ar-

rangements will lead to amaximal growth rate. Chapter 9, “Resource allocation in complex cell models”,

shows how these general principles are applied in large cell models that describe small-molecule and

macromolecule metabolism at a great level of detail.

4. Time and uncertainty - While the models in the previous chapters all assumed steady states, and of-

ten a simple choice of the “best state” for a cell, the following chapters explore some more possibilities

and how one can describe them by models. Chapter 10, “Optimal cell behavior in time”, extends the
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Figure 4: Metabolic models and levels of description – (A) Main elements of metabolic models. The exam-
ple shows a linear pathway of 3 enzyme-catalyzed reactions. Following the convention in kinetic models,
the “boundaries” of the model are external metabolites (marked as ”ext”). In flux analysis models, the
boundaries are typically not formed by metabolites, but by exchange reactions. (B) Levels of description
of a metabolic model, from network structure (metabolites and reactions) to a quantitative physical de-
scription (comprising for example concentrations and fluxes) and further to a function-related “economic”
description (comprising physiological constraints, costs, and benefits).

question of optimal resource allocation to optimal scheduling processes in time, where the cell needs

to achieve its goal in a certain time horizon and resources can be shifted between different moments

in time. The next two chapters are concerned with variability. Chapter 11, “Diversity of metabolic fluxes

in a cell population”, explores how cells in a population, instead of realizing the same optimal flux dis-

tribution, may realize different fluxes, creating random differences between individual cells in a given

environment. On the contrary, Chapter 12, “Cells in the face of uncertainty” assumes that cells live in an

unpredictable environment and need to “make bets” on how the environment will change in the future,

and addresses what are the best strategies.

5. Sizes and shapes - The last two chapters of the book are concerned with space in a broader sense.

Chapter 13, “Strategies for cell size control” describes how cells choose the moment of cell division,

which determines the distribution of cell sizes in cell populations. Chapter 14, on the “Economy of

organ form and function”, goes beyond microbiology and describes more broadly how systems in the

body and their physiological usage – in this case, the lungs in mammals and the speed and depth of

respiration – are shaped by their size, and how general scaling laws for shapes can give rise to similar

laws for biological function and the “economics” of the system in question.

A few words on mathematical models

As mentioned in Figure 2, in this book, cells and cell behavior will be largely described with the help of

mathematical models, often used in biology to gain insight into biological systems through simulations

and quantitative analysis. As shown in Figure 4, our models typically describe a set of metabolites and

the reactions that convert them, forming a network; we then attribute concentrations to the metabolites

and chemical fluxes to the reactions and describe their dynamics; and finally, based on this dynamics, we

consider ”economic” questions, often in the form of optimality problems. Although different chapters will

focus on different types of models (describing metabolic fluxes, compound concentrations, cell growth,

or all of these aspects together) and models of different size (from simple instructive 3-variable models to

models covering thousands of different cell components), all these models eventually describe different

aspects of one cell and the same cell. Therefore, the different types of model are closely related and

sometimes one model can be seen as a simplified form of another one. Figure 5 shows a basic scheme

of a cell, where precursors produced in metabolism are converted into proteins, which then constitute

the machines that catalyze metabolic reactions (as enzymes) or protein production (as ribosomes). By

“zooming in” and focusing on different aspects of this scheme, we obtain the main types of models that

we will encounter in this book.
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rate laws v = v(e,c)
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maximize the flux benefit b(v)
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-1 v
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Protein sector model
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enzyme and ribosome amounts
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Figure 5: Simple scheme of a cell, and common function-based (“economic”) cell models – A microbial cell,
depicted here by a very simplified scheme (center top), can be viewed in various ways. Two main views
on cells come from quantitative data obtained from experiments (here represented by the proteome, top
right) and from the network of metabolic reactions (left), covering all (or a part) of the production and con-
version processes in the cell. These conceptual pictures can be translated into mathematical models that
describe (and predict) a number of cell variables. The three remaining boxes refer to three common types
of resource allocation models presented in this book, each covering a different scope - from metabolism
to entire cells. The formulae are explained in later chapters (N: stoichiometric matrix; v: vector of fluxes;
b(v): flux benefit function; a(v): flux cost function; kapp: apparent catalytic rate of an enzyme; v(e, c): rate
law of an enzymatic reaction, giving the rate as a function of enzyme level e and metabolite concentration
vector c).

Where to find more information

In addition to the main text, the book offers additional material.

Background knowledge and literature. Cellular economics - and systems biology more generally - builds

on knowledge from different disciplines and on a history of ideas in biology and beyond. In the section

”Reading recommendations” at the end of the book, you will find a number of books, articles, and online

resources that provide background information.

Reading recommendations for individual chapters. For readings specific to individual chapters, please

see the ”Recommended readings” sections at the end of each chapter.

Boxes. In the chapters, some specialized topics or thoughts on the side can be found in separate boxes.

Most of these boxes belong to one of these categories: Economic analogies, Philosophical remarks, Physi-

cal thoughts and analogies, Mathematical details, Experimental methods in biology. The remaining boxes

contain ideas that did not fit into this simple scheme. A list of all the boxes can be found at the end of the
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book.

Book website. More information about the book and the economic cell collective behind it can be found

on our website https://principlescellphysiology.org/book-economic-principles/.

Problems and computer exercises. The problems at the end of each chapter are amix of conceptual ques-

tions, paper-and-pencil calculation exercises, and computer exercises. Solutions to some of the problems

can be found in the end of the book. More computer exercises (Jupyter notebooks) can be found on our

website: https://principlescellphysiology.org/book-economic-principles/problems.html.

Lectures. All book chapters have been presented as lectures at our ”Economic Principles in Cell Biology”

summer schools at LPI Paris. Lecture slides are providedonourwebsite: https://principlescellphysiology.

org/book-economic-principles/lectures.html.

You canparticipate inwriting this book. You canparticipate in our project inmanyways. If youhave direct

feedback for us (which may concern anything from typos to proposing new topics), please let us know via

our feedback formon thewebsite. If youwould like to be directly involved (inwriting, reviewing, proofread-

ing, graphics design, or any other smaller or larger tasks), please contact us anytime. Formore information,

see https://principlescellphysiology.org/book-economic-principles/contribute/EPCB.html.

https://principlescellphysiology.org/book-economic-principles/
https://principlescellphysiology.org/book-economic-principles/problems.html
https://principlescellphysiology.org/book-economic-principles/lectures.html
https://principlescellphysiology.org/book-economic-principles/lectures.html
https://principlescellphysiology.org/book-economic-principles/contribute/EPCB.html


Chapter 1

The cell as a factory

Ohad Golan

The term ”metabolism” is usually used to describe the chemical reactions that occur within biological or-

ganisms to produce and transform molecules needed to sustain life. Although this definition is useful, it

does not give scientific or mathematical ground for the analysis of metabolic systems. Here we consider

metabolic systems in a much broader sense, and in order to provide a logical framework for the analysis

of metabolic systems, we begin with a more formal definition that also covers systems outside biology.

Metabolic system: ”A well-defined system that takes up nutrients and uses them to sustain itself”. This

definition can be represented by a simple chemical equation:

nutrients −→ metabolic system + waste products

The process is carried out by the metabolic system itself - a point we will expand on later. The waste

products are typical leftovers of the reaction in case such products exist. The most obvious example

of a metabolic system is a biological system that takes up substances from its environment and assimi-

lates them to reproduce its own components (often summarized as ”biomass”). The chemical equation of

metabolism for biological systems is:

c1 sugar + c2 oxygen + c3 ammonia −→ biomass + waste products

The equation describes all the nutrients, including sugar, oxygen, and ammonia, that are necessary to

sustain a biological system. Other molecules such as certain metals and phosphate are also necessary for

the reaction to occur, but we neglect them for the sake of brevity. The typical waste products are water,

carbon dioxide, and other possible chemicals secreted by the system.

In this book we focus on the analysis of biological metabolic systems. However, given that economic

systems fall under the same definition of a metabolic system, we will use them as analogies to simplify

explanations. Whenever an analogy to economical systems is presented in this book, it will be displayed

in an ”Economic analogy” box such as the one above.

Manymetabolic systems use a strategy of reproduction to sustain itself. That is, nutrients are used tomake

more of the metabolic system and not only to maintain it. This means that the output of the metabolic

process is more of the metabolic system. This creates a system that, when unlimited resources are avail-

able, grows exponentially - themetabolic system takes in nutrients which it uses to replicate, the output of

the process is also themetabolic systemwhich takes inmore nutrients and also replicates. Metabolism in-

cludes all the processes that take place in order to carry out the overall chemical conversion ofmetabolism

11



12 The cell as a factory

Economics analogy 1.A A cell and a construction firm as black boxes

black box description of microbial growth

economic analogy (construction company)

sugar

oxygen

ammonia

acetate

carbon

biomass

cement

timber

iron

houses

waste

value

Another, less typical, example of ametabolic system in this general sense is an economic firm supplying a product.

In this example we will consider for simplicity a firm that builds houses, but any kind of product can be equally

used. Such a firm takes in land and different construction materials, these would be equivalent to the nutrients,

and by the use of the labor force, which would be equivalent to the proteins, uses them to build houses. The

houses are then sold to maintain and increase the value of the firm, just as the biological cell maintains itself. The

chemical equation of metabolism for a construction firm is:

c1 land + c2 construction materials −→ value + c3 waste

- that is, everything that happens inside the black box described above. The most fundamental model of

a metabolic system is one that takes nutrients from the environment, breaks them down into building

blocks, and uses these building blocks to sustain itself. In biological systems, these processes are termed

catabolism and anabolism. In catabolism, the cell takes up carbon and nitrogen sources from the envi-

ronment and uses them to synthesize the necessary building blocks: amino acids, nucleic acids, and fatty

acids. In the anabolic process, the building blocks are used to form biomass which includes the function-

ing systems of the cells, proteins, DNA strands, and the membrane. Each process is catalyzed by a specific

set of enzymes. These enzymes that catalyze the reactions are actually the metabolic system itself. When

the cell grows, it makes more enzymes to catalyze more reactions - this is the reproduction process that

leads to exponential growth.

The metabolic system controls the allocation of the available resources. When coordinating the process,

themetabolic systemdecides between different strategies on how to best use the resources. For example,

the cell decides how much of the available enzymes to allocate to the catabolic process and how much

to the anabolic process. When making these decisions, the cell takes into account different physical con-

straints. Examples of these physical constraints are: a limited physical volume to maintain and carry out

the metabolic processes, a limited surface area that constrains the ability to take up nutrients, or limiting

thermodynamic constraints on the activity of the enzymes. There is no one best strategy that is always

utilized - different organisms decide on different strategies based on the living conditions. This decision

process is carried out bymanymechanisms in the cell, themain information processing core of the cell be-

ing DNA. The decisions carried out by the cell are based on the evolutionary process the metabolic system

has gone through during its existence. A description of cell information processing and how it is carried

out is given in Appendix A.

So far, we describe the most fundamental metabolic system. This is a coarse-grained description in which

the cell catabolizes nutrients into one type of precursor and does not take into account all the processes

that take place in catabolism and anabolism. In a biological metabolic system, the cell requires multiple

different types of precursors, such as amino acids, nucleic acids, and fatty acids. To create all the different

precursors, the cell takes in nutrients from the environment and, through a set of chemical reactions,

turns the nutrients into the precursors that are necessary for the cell to sustain itself. Each chemical
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Economics analogy 1.B A cell to a construction firm as growing systems

In an analogy to an economic system of a construction firm, the catabolic process would correspond to the pur-

chase and transfer of the construction materials to the construction site, and the anabolic processes would corre-

spond to the construction of the house; the catalytic enzymes would correspond to the workers carrying out the

transfer of the materials and construction process. The growth process in bacteria is analogous to the growth of

the firm - when the construction of the house is complete, the house is then sold to increase the value of the firm.

The increased value enables the company to hire more workers and build more houses.

construction company

microbial growth

biomassnutrients

reaction in the metabolic process is carried out by proteins. The different precursors can be produced

through different sets of chemical reactions known as metabolic pathways, and the different chemicals in

the metabolic pathways are known as metabolites. The cell decides which metabolic pathway to activate

by producing the necessary enzymes. In an analogy to the economic system of a construction company,

each chemical reaction is one process carried out by a worker – for example, the assembly of the frame of

the house requires a carpenter, while the next step in the construction pathway is to place the foundation

in the correct location, which is done by another worker. The workers are analogous to enzymes, and the

different parts necessary for construction are the metabolites.

Many metabolic pathways have overlapping metabolite reactants and products. Some of the key parame-

ters that describe metabolic pathways are the enzyme catalytic rates. These parameters describe the rate

at which the enzymes consume and produce metabolites and at which concentration of reactants they

saturate. In the analogy to the construction firm, the enzymatic parameters are parameters that describe

the rate of work of each worker. Given that each metabolic pathway is made up of a series of chemical

reactions, each with different catalytic rates, the different enzymes of each pathway must be coordinated

Economics analogy 1.C Allocation of workforce

In an analogy to the economic system of a construction company, the company manager faces the decision of

how to allocate his workforce, how many of his workers to assign to bring in materials from the factory and how

many of his workers to assign to the construction process. In a similar way to the biological system, there are dif-

ferent limiting constraints, such as a difficult topographic construction site or limited available resources. Unlike

the biological cell, though, in which the decision-making is embedded by the evolutionary processes, here the

decision is made by the manager of the construction site.
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waste

nutrients biomass

Figure 1.1: A self-replicating cell – In themetabolic process the cell takes in available nutrients and through
a set of biochemical reactions, turns them into precursors necessary for growth. The chemical reactions
are carried out by proteins in the cell.

perfectly to avoid any excess buildup of metabolites - just like in a factory assembly line, all the workers

must be coordinated together to avoid buildup of an intermediate.

In order to make sense of the complex network of metabolic reactions, different mathematical models

were developed. The models take into account the known experimental data for the different reactions

and compile them together to predict the overall response of the system under different growth condi-

tions.

The metabolic models described above describe biological systems that are disconnected from the envi-

ronment except for some artificial supply of nutrients. In natural ecological systems, different organisms

exist together under a limited supply of nutrients. They compete or cooperate to best utilize the limited

available resources. All organisms try to improve their chances of survival according to the laws of evolu-

tion. In such a setting, the metabolism of organisms living in an ecological system is directly dependent on

the other organisms that co-exist with them. In an analogy to an economic system, this would be a com-

petition between different companies for the same possible clientele. Some companies would compete

against each other, while others would cooperate to improve their profit.
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An inventory of cell components

Pranas Grigaitis and Diana Széliová

Chapter overview

◦ The main components of a cell are proteins, RNA, DNA, lipids and carbohydrates.

◦ The quantities of these components vary depending on the cell type and the cell’s environment.

◦ These components are synthesized by enzymes and molecular machines such as ribosomes and

DNA/RNA polymerases.

◦ There are many parallel processes happening in cells and they have to be coordinated.

◦ Cellular processes are constrained by factors like temperature, diffusion limits, and density.

2.1 Describing and counting cellular components

Cells contain a diverse spectrum of molecules, needed to create two cells out of one (as Rudolf Virchow

proposed, omnis cellula e cellula, all cells come from cells). These molecules come in different sizes and

properties and therefore create a demand for a cell to keep these components in different places (spa-

tial organization) with different patterns of use (temporal organization), and book-keep their quantities.

Cell composition directly influences cell function: thus we observe different cellular make-up in different

organisms or even in different cells of the same organism.

Historical research and the latest advances in instrumentation allow us to characterize the constituents

of cells in increasing depth. Today, collections of such biological numbers, like BioNumbers, store thou-

sands of values available at your fingertips, a long way from scouting the numbers in original publications.

Specialized open databases, e.g. Human Serum Metabolome Database [1], bring increasing amounts of

measurement data available to the community.

Being able to operate basic biological numbers has multiple benefits when thinking of the cellular econ-

omy. To name a couple, first, it allows “back-of-envelope” calculations, where we aim to estimate the

plausible order of magnitude of a derived value, rather than the exact value. This sort of thinking boosts

interpretation of results considerably, as it allows us to rule out unrealistic outcomes. Second, compu-

tational models of cell growth (Chapter 8) usually use numbers like average cell size or protein mass as

parameters. Consequently, the choice of parameters has a direct influence on the quantitative predic-

tions. Last but not least, these simple calculations allow us to establish relationships between different

components of the cells - and cells are nothing but heavily intertwined networks of molecules.

Counting molecules in a cell is as important to the cellular economy as counting different sorts of fruits

and vegetables in a warehouse – and is a key ingredient in the journey towards understanding of the
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principles behind the cellular economy. As we unveil throughout the book, it seems that cells can be

treated as “little bookkeepers under the microscope”. Thus in this chapter, we will do a census of cellular

components: we will discuss what molecules make up a cell, what they are derived from, how to measure

these components in the lab, and we will briefly consider allocation of resources, directed to synthesize

individual cellular components.

2.2 The components of a cell

2.2.1 Elemental composition of the cell

Although livingmatter comes in different shapes and sizes, over 99% of the cellular mass can be described

by only a handful of chemical elements. 6 most abundant elements form the famous CHNOPS notation:

carbon (C), hydrogen (H), nitrogen (N), oxygen (O), phosphorus (P), and sulfur (S). Taken together, these

6 elements encompass the vast majority of the mass, namely, ca. 97.5% in budding yeast Saccharomyces

cerevisiae [2]. Living cells also contain minute amounts of different metal ions, such as sodium (Na), potas-

sium (K), iron (Fe), molybdenum (Mo) and others – usually facilitating signal transduction or supporting

enzymatic catalysis.

2.2.2 Biological molecules

Although cells contain many different molecular species (“molecular identities”), we can crudely categorize

them into small molecules and macromolecules based on their molecular weight and complexity. Small

molecules, as the name suggests, are small chemical compounds, up to 1000 Daltons in mass (1 Dalton

= 1 atomic mass unit, 1 amu), and are usually composed of a non-repeating single chemical unit (called

monomer). Macromolecules, on the contrary, are up to several megadaltons (MDa = 106 Da) in weight, and
are frequently composed of multiple monomers (forming so-called polymers). Compounds in the cells,

both macro- and small molecules, based on their chemical nature, fall into 5 big groups: proteins, nucleic

acids (both macromolecules), carbohydrates (exist as both small molecules and polymers), lipids (small

molecules), and cofactors/other small molecules.

Proteins are polymers, composed of amino acids. Proteins are an exceptionally diverse class of molecules:

in Nature, 20 amino acids can be incorporated into proteins (so-called proteogenic amino acids), which,

combinatorially provides 20 options for eachposition in the protein chain. Therefore, there is an enormous

amount of possible combinations to make a protein of a length of 100 amino acids (20100, to be precise),

even for a amino acid chain way shorter than the average in E. coli, around 325 amino acids (BioNumbers

ID (BNID) [3] 108986). This diversity gives rise to the spectrum of functions proteins can do, for instance,

catalysis (catalytic proteins are also called enzymes), transport of molecules, keeping structural integrity

of membranes, and others. Also two notable properties of proteins are that they (1) need to acquire a

specific three-dimensional structure (“to fold”) in order to become functionally active, and (2) sometimes,

they also need to form complexes of the same or other proteins (called multimers). Protein production

is a major consumer of energy and biosynthetic intermediates in the cell, therefore, in this book we will

frequently consider proteins as central players in implementing economic principles in cell physiology.

Nucleic acids are another category of macromolecules; their monomers are called nucleotides. There

are two major classes of nucleic acids, RNA (ribonucleic acid) and DNA (deoxyribonucleic acid). RNA and

DNA chemically have a slight, yet critical difference: the sugar, which is a part of the nucleotides, differs

between RNA (ribose) and DNA (deoxyribose). The two sugars are almost the same but for one chemical

group: one of the carbon atoms in ribose is connected to two another carbon atoms, a hydrogen atom, and

a chemical group, called hydroxy- (−OH). In deoxyribose, the hydroxy-group is substituted with another

hydrogen atom, hence the prefix “deoxy-” (“minus oxygen”). RNA and DNA have different functions in

the cell: the primary function of DNA is to store genetic information, while RNA can work both as an

intermediate agent to transfer that genetic information to protein production (messenger RNA, mRNA) or

to participate in catalysis and protein production in general (e.g. transfer and ribosomal RNA, tRNA and

https://bionumbers.hms.harvard.edu/search.aspx
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rRNA, respectively). Outside the polymers, nucleotides can also act as energy-accumulating compounds

(e.g. ATP, adenosine triphosphate) or signaling molecules (e.g. cyclic adenosine monophosphate, cAMP).

In this text, we will mostly refer to the energy-storing function of the nucleotides, although other functions,

such as signaling, also are essential aspects of describing cell physiology.

Carbohydrates are another major class of biological molecules, and are important both as monomers and

highmolecular-weight polymers. Monomeric carbohydrates (sometimes also referred to as simple sugars)

are mainly used as carbon and energy sources for organisms, e.g. glucose or fructose. Oligosaccharides

made up of two or three linked monomers can also used as energy source and many of them are specific

to certain groups of organisms (e.g. melezitose, a trisaccharide found in insect honeydew). In oligomeric

form (up to 10 monomers), carbohydrate chains are essential for cellular sensing systems: proteins can

be “decorated” with chains of carbohydrate monomers to be recognized by receptor molecules on the

surface of the cell. Finally, polymers of carbohydrates usually serve as structural components (part of

peptidoglycan, major part of bacterial cell walls) or energy/carbon storage (glycogen in, e.g. yeasts and

animal cells, or starch in plants).

Lipids are a vaguely-described class of compounds, which have an overarching similarity, being water-

insoluble. The major function of lipids in biological cells is structural: a very abundant subclass of lipids,

phospholipids, is an essential constitutent of biological membranes. As discussed in Section 2.2.1, mem-

branes themselves have a variety of functions, which are mostly carried out by lipids (structural) or pro-

teins (transport, sensing, signaling etc.). Some lipids can also undertake other functions, such as signaling

(various sterols), or energy storage (tryglycerides, or fats).

As we see, the metabolism of biological molecules is tightly interlinked, although they exibit major dif-

ferences in their abundance, size and chemical properties. Macromolecules are present in very low con-

centrations, and their biosynthesis usually takes minutes. Meanwhile, the time scale of small molecule

reactions is usually seconds (or fraction of), and the concentrations of small molecules are usually several

magnitudes higher than these of macromolecules. Yet, despite acting at different rates and concentra-

tions, these two types of biological molecules work in an orchestrated manner. To begin with, a number

of different small molecules are required to produce both other small molecules and themacromolecules.

In return, the macromolecules ensure cell integrity and growth by, among other functions, operating the

reaction networks of small molecule interconversions (which we usually refer to as metabolism). Addi-

tionally, presence of some small molecules can influence the function of macromolecules, both directly

(e.g. essential cofactors, needed for enzymatic reactions; enzyme activation or inhibition), and indirectly

(e.g. modulation of gene expression, signaling). Therefore, a lot of different processes have to happen in

parallel to ensure the operation of the cells. Having defined the major types of molecules we find in living

cells, next we will discuss how abundant are different components of the cells.

2.3 Cell organization and size

In an extremely simplifiedway, cells can be looked at as bags of fluid-likematerial, kept together by amem-

brane. These “bags of things” can also contain other membrane structures inside them, forming so-called

organelles. In cell biology, we call cells prokaryotic if they do not possess these membrane structures, and

eukaryotic if they do. The divide between prokaryotes and eukaryotes can be illustrated by comparing two

organisms: the prokaryotic bacterium Escherichia coli and the eukaryotic yeast Saccharomyces cerevisiae.

They both are organisms, composed of a single cell (thus called unicellular), and they both are very small,

compared to a typical human cell. However, E. coli does not contain any additional membrane structures

except from the plasma membrane (which encompasses the cellular contents). Meanwhile, a handful of

different organelles can be observed in S. cerevisiae. The cellular organization of these cells is shown in

Figure 2.2.
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Box 2.A Macromolecular machines

An important consideration about both proteins and nucleic acids is that they are polymerized by very specialized

protein- and protein-nucleic acid complexes. These molecular machines use energy (in terms of ATP equivalents)

to form chains of the respective monomers.

RNA polymerase

Ribosome

precursors
energy

transcription

translation

NT

AA

ATP

ATP

For proteins, amino acids (AA) are combined into a so-called peptide chain in a process called translation, which

is catalyzed by ribosomes – large complexes made from proteins and RNA. Nucleic acids (RNA and DNA) are syn-

thesized from nucleotides (NT) though a process called transcription by enzyme complexes known as nucleic acid

polymerases. There are two major classes of them, RNA and DNA polymerases, each specific to their respective

nucleic acid.

2.3.1 Membrane-bound structures of the cell

Most biologicalmembranes andmembrane-based structures, including the plasmamembrane itself, have

multiple functions (not only separating space), and are highly dynamic. Some membranes can fold into

very compact structures with extremely high surface area (endoplasmic reticulum, Golgi apparatus), oc-

cupy different volumes - from small vesicles to large vacuoles, occupying a major fraction of the cell vol-

ume. Moreover, some molecules can form very large structures, which might be transient (short-lived),

thus capturing and defining them remains a major challenge. For these reasons, the fine structure of cells

is unclear - some findings (e.g. organelle contact sites, see [4] for a recent review) hint into some functional

organization of organelles, yet the canonical way to look at the cellular structure remains as to a “bag of

things”.

A notable example of a highly specialized organelle is the mitochondrion. Themitochondrion is separated

from the rest of the cell by two (outer and inner) membranes; this feature is essential for their function.

In eukaryotes, mitochondria are a major hub of metabolism: they house essential biochemical pathways,

such as tricarboxylic acid cycle (also known as citric acid-, or Krebs cycle), as well as the so-called respira-

tory chain, the machinery for generating energy with the use of oxygen (see Chapter 3 for more details).

While the most biochemical interconversions happen inside the mitochondria (in mitochondrial matrix),

the respiratory chain proteins are located in the inner mitochondrial membrane: these proteins create

an electrochemical gradient across this membrane, and use it to drive the conversion of energy, stored in

nutrients, into the energy the cell can use (in a form of ATP). What makes mitochondria even more inter-

esting is that they also contain mitochondria-specific genetic information (mitochondrial DNA), which is

essential for mitochondria to function inside the cell. In many organisms, the loss of mitochondrial DNA

results in impaired growth (in yeasts, that is called the petite phenotype) [5], and some organisms cannot

grow unless mitochondrial DNA is present (petite-negative yeasts).
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2.3.2 Cell size

There is a remarkable variability of cell sizes in nature (Figure 2.1). Figure 2.2 shows the typical sizes

of bacterial, yeast and mammalian cells, which range from 1 to 15µm. However, we can easily find more

extreme values. For example, one of the largest cells in the human body, the egg cell, is 100µm in diameter

(BNID 111184). Bacteria are usually considered very small, in fact, the diameter of the smallest known

bacterium Mycoplasma is only 0.2µm (BNID 104717). Meanwhile, on the other side of the spectrum, the

largest bacteria Thiomargaritamagnifica can reach up to 2 cm [6] which is evenmore thanmostmammalian

cells. However, this giant bacteria looks very different from typical bacteria like E. coli – it has hundreds

of thousands of genome copies in organelle-like structures. There are exceptional cases where cells can

reach even bigger sizes. The largest known single-celled organism is the alga Caulerpa taxifolia. It has

many nuclei that are not separated by amembrane and reaches up to onemeter [7]. Another special case

is a neuron – its body has a small diameter (100µm), but its axons can extend to more than a meter (BNID

109548).

For many organisms, cell size changes with environmental conditions. As already mentioned in Sec-

tion 2.4.1, the size of the cell varies with the growth rate, and depends on how a particular growth rate

is reached. More than 60 years ago, Schaechter et al. discovered the nutrient growth law – cell volume

increases exponentially with growth rate (as a result of the nutrient availability in the medium) [8]. Since

then, the correlation between cell size and growth rate was also observed for other organisms [9, 10, 11]

(BNID 107948, 110191, 105103). However, when the growth rate is changed by other means, for example

by temperature, this relationship is not observed [8, 12].

2.3.3 Variation of single-cell sizes and shapes

The relationships above refer to an average cell volume in the population. However, at the single-cell

level, size changes throughout the cell cycle. Before cells divide, they essentially need to double their size.

Otherwise, they would get smaller and smaller with each division. However, they also cannot grow too

much, or the average cell size would get bigger and bigger. There are various mechanisms of how cells

maintain a cell size homeostasis, and they are discussed in detail in Chapter 13.

Aside from cell size, we need to consider the importance of cell shape. Different cell types come in dif-

ferent shapes, such as spheres, ovals, rods, or spirals. Differently shaped cells may have the same volume

but very different surface area and surface area to volume ratio (SA/V). Spheres have the lowest possible

SA/V while more complicated shapes have higher SA/V. What happens to the shape when a cell changes

its volume (for example, in response to environmental conditions)? For many cells, the shape remains

roughly the same – for example E. coli always looks like a rod. As a result, SA/V decreases as cells get

larger. On the other hand, some cells vary their size and shape but maintain a constant condition-specific

SA/V [13].

2.4 Cell composition in numbers

Throughout this book, we will explore various ways to model cells mathematically. For that, we need to

know not only what the main components are but also what are their quantities. For example, proteins
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Figure 2.1: Variability of cell size across organisms
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1 m

Figure 2.2: Biomass composition and cell structure of a typical bacterial, yeast, and a mammalian cell –
The area of each polygon corresponds to a mass fraction of a component per cell. While the average com-
position is quite similar in the three groups, there are major differences in size and internal organization
(especially when comparing prokaryotes with eukaryotes). Data for proteome groups (length-weighted
protein abundances) was obtained from Proteomaps. Sources of composition data: bacteria [14], yeast
(BNID 108200, 108196, 107234, 100261, [15]), mammalian cells (BNID 107131, 107235, 107234). Pictures
of cells were created using Bioicons1.

are usually the most abundant constituent of the biomass, and many simplified mathematical models

focus solely on proteins. However, somemodels include amuchmore detailed description of the biomass

composition. Additionally, we need to know how biomass composition changes in different environments.

For instance, the observation that RNA/protein ratio increases with growth rate hinted how cells reallocate

resources to grow faster, inspiring the development of mathematical models that capture this behavior.

Cells are composed of around 70% water and 30% dry mass. As mentioned previously in the chapter, we

can describe the composition of the dry mass with the most abundant chemical elements. For example,

the elemental formula for E. coli is CH1.77O0.49N0.24 (BNID 101800) and for S. cerevisiae CH1.61O0.56N0.16 (BNID

101801). However, this kind of description is not particularly useful for understanding cells because it does

not capture the variety of molecules that exist in a cell.

Therefore, we are more interested in biomass composition in terms of the main macromolecules (pro-

teins, nucleic acids, lipids, and carbohydrates) and small molecules (metabolites, cofactors, and ions). Ta-

ble 2.1 summarizes an average composition of E. coli and S. cerevisiae during exponential growth, the

typical molecular masses and copy numbers of the components. The most abundant component is pro-

tein, which forms around half of the dry mass of the cell. When we divide the proteome into functional

groups, we find that the biggest fractions belong to translation, central carbonmetabolism, folding, sorting

and degradation, and biosynthesis. A substantial fraction belongs to proteins that are not mapped (es-

pecially in mammalian cells), illustrating that we still lack knowledge about the function of many proteins

1The icons bacterium-interior, golgi-3d-1, mitochondrium-3, endoplasmatic-reticulum-3d-medium, endoplasmatic-
reticulum-rough-3d-2, endoplasmatic-reticulum-rough-3d, and nucleus by Servier are licensed under CC-BY 3.0 Un-
ported.

https://www.proteomaps.net/download.html
https://bioicons.com/
https://smart.servier.com/
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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(Figure 2.2).

RNA forms 20% of dry cell mass in E. coli, but this number is lower in eukaryotes, such as yeast (11%)

or mammalian cells (4%). While the total amount of RNA is variable in different organisms, its relative

composition is similar –most of the RNAmass is formed by rRNA (80%), followed by tRNA (15%) andmRNA

(5%) (BNID 100258, 100261, 106154). Lipid content is the highest in mammalian cells (13%) compared

to yeast and bacteria (4-10%, BNID 111209, Table 2.1). Remarkably, there are cases where engineered

yeast cells accumulated up to 80 % of lipids per cell dry mass [16]. The content of storage carbohydrates

varies from around 30% in yeast to 3% in bacteria (Table 2.1). In bacteria, carbohydrates are stored as

the polysaccharide glycogen, while yeast cells use glycogen and the disaccharide trehalose. Yeast cells

also contain structural polysaccharides, such as mannan and glucan [15]. Bacteria contain the structural

molecule peptidoglycan (3% of dry mass) – a polymer of sugars and amino acids, which forms bacterial

cell walls. In addition, some bacteria (e.g. E. coli) also have lipopolysaccharides on their cell wall (3% of dry

mass).

A small fraction of the cell mass (2- 3%) is formed by small molecules (< 1000 Da) such as metabolites and

ions. This group contains thousands of different molecules with vastly different functions and concen-

trations. For illustration, the concentrations of the most abundant metabolites in E. coli range from 10−1

to 10−7 moles per cell, corresponding to a range of 108 to only 100 copies per cell [14]. Possibly, there

are metabolites with even lower concentrations, but these are much more difficult to quantify. Similarly,

the concentrations of the most common inorganic ions (K+, Na+, Mg2+, Ca2+, Cl – ) span several orders of

magnitude [14].

2.4.1 Variability of biomass composition

Table 2.1 shows biomass composition of a typical E. coli and S. cerevisiae cell – these are average values

in certain environmental conditions. However, cell size, mass, and composition vary with growth rate

and environmental conditions. One of the most extensively studied relationships in the literature is the

correlation of growth rate with cell size. The increase of cell mass and volume with growth rate has been

observed in bacteria (Figure 2.3), yeast, andmammalian cells [8, 9, 10, 11] (BNID 107948, 110191, 105103).

For example, the cell mass of E. coli can vary fivefold – 150 to 870 fg per cell for generation times between

100 and 24 minutes [14]. Larger cell mass goes hand in hand with larger amounts of individual biomass

components. The absolute amounts of protein, RNA, and DNA increase with cell size. However, the ratios

of the components do not stay the same and the relative composition changes with growth rate [8, 12].

One of themost consistent observations is that the relative amount of RNA per cell increases with a higher

growth rate [8, 12, 20], (BNID 111460, 111755, 108200). On the other hand, the data for relative protein

% of dry mass Mass per cell [fg] Molecular mass [Da] Copy number
E. c. S. c. E. c. S. c. E.c. S. c. E. c. S. c.

Proteins 55 51 165 7650 40000 55000 3 × 106 108

RNA 20 11 60 1650 104-106 104-106 3 × 105 4 × 106

DNA (chromosomal) 3 0.5 9 75 3 × 109 2.5 × 108 2 16
Lipids 9 6 27 900 800 800 2 × 107 109

Storage carbohydrates 3 0.5 9 75 106 variable 4000 –
Structural polymers 6 23 18 3450 variable variable – –
Metabolites/cofactors 3 2 9 300 < 1000 < 1000 – –
Other 1 6 3 900 – – – –

Table 2.1: Amounts, characteristic molecular masses and copy numbers of themain biomass components
for Escherichia coli (E. c.) and Saccharomyces cerevisiae (S. c.). The composition data is shown for E. c. with
a doubling time of 40 minutes (BNID 104954) and for S. c. with a doubling time of 110 minutes ([17],
BNID 111755). The storage carbohydrates include glycogen for E. c. / glycogen and trehalose for S. c.. The
structural carbohydrates include peptidoglycan and lipopolysaccharides for E. c. / mannan and glucan
for S. c.. Sources for molecular masses (BNID 105861, 115091, 101838, 104886, 107678, 109645, 102502,
100459); molecule copy numbers (BNID 108248, 108197, 114950).
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Box 2.B Orders of magnitude

The quantities of biomass components are usually expressed in relation to other quantities. The most common

units are copy numbers, moles, grams, or fractions which can be expressed per cell, per gram dry mass, or per

cell volume. Membrane components can also be expressed per surface area. Often, experimental data for these

quantities is not readily available, so we need to extract it from literature. Useful sources for average or “rule

of thumb” values include BioNumbers database [3] and the book Cell Biology by the numbers [14]. Some useful

quantities are summarized in the table below.They are organized in increasing order with respect to the dimen-

sions (1 – mass, size, thickness; 2 – area; 3 – volume, density). Notice how the dimensions influence the numerical

values. For example, while the cell size differs only about 3-fold between bacteria and yeast, the surface area

differs by more than tenfold and the volume by about 60-fold. Because volume grows faster than area, the ratio

of cell surface area to volume (SA/V) gets smaller and smaller as cells get bigger (see more in Section 2.3.2). Note

that these are just “rule of thumb” values. In reality, these values typically cover a broad range and depend on

environmental conditions.

Name Unit E. coli S. cerevisiae BNID/Reference

Surface area/volume (SA/V) µm−1 6 1.2 calculated here

Dry cell mass pg 0.3 15 104954, 108315

Total cell mass (with water) pg 1 60 104954, 108315

Bilayer membrane thickness nm 4 4 [14]

Cell size µm 1-2 5 [14], 101796

Cell surface area µm2 6 70 101792, 113854

Cell volume µm3 1 60 101788, 101794

Cell density g mL−1 1.1 1.1 103875, 103876

(A) (B)

Figure 2.3: Growth laws in E. coli – (A) Cell volume grows exponentially with growth rate (data from [18]). (B)
RNA/protein ratio grows linearly with growth rate (data from [19]). In both cases, growth rate was varied
by changing medium composition.

content is more variable. For example, in bacteria, protein content decreases with growth rate in some

studies [12, 20] but goes up and down in another (BNID 111460); in yeast, it increases (BNID 108200,

111755). Nevertheless, when looking at RNA/protein ratio we consistently find a positive correlation with

growth rate across various species of bacteria (see Figure 2.3) and yeast [19, 21]. RNA/protein ratio is a

measure of protein production capacity since most RNA is dedicated to protein synthesis. 80% is rRNA,

which forms 2/3 of the mass of a bacterial ribosome – the molecular machine that makes proteins, and

15% is tRNA which brings new amino acids to the ribosome (for more details about ribosomes, see Sec-

tion 2.5). Indeed, we also observe a correlation between ribosome content and growth rate. The increase

of RNA/protein ratio and ribosome content with increasing growth rate reflect higher biosynthetic needs

of faster-growing cells. To support higher growth rate, cells need to reallocate resources according to the

https://bionumbers.hms.harvard.edu/search.aspx
http://book.bionumbers.org/
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growth demands (for example, make more ribosomes which can then make more proteins) [19].For more

details about resource allocation and how it is modeled see Chapters 8 and 9.

Similarly to protein content, there is no clear correlation between the relative DNA and lipid content with

growth rate across studies [12] (BNID 111460, 111755, 108196). The content of storage carbohydrates

decreases at higher growth rates in yeast and bacteria [20] (BNID 111755, 111460).

As we have seen, the composition of the biomass changeswith the growth rate, and for some components,

we can describe this relationship with simple mathematical equations [20, 12]. However, the growth rate

is the result of environmental conditions such as the amount or quality of a carbon source, temperature,

oxygen concentration, or presence of inhibitors, among others. Different conditionsmay lead to the same

growth rate but may not result in the same changes in cell physiology [9]. For example, modulation of

growth rate by temperature rather than medium composition does not significantly affect cell size and

composition [8, 12]. Inhibition of ribosomes with an antibiotic decreases the growth rate but increases

the ribosome content, contrasting to the nutrient law shown in Figure 2.3 [19].

In contrast, environmental factors can influence cell compositionwithout affecting growth rate. This shows

that cell metabolism is flexible – cells can reach the same growth rate in different ways, depending on the

conditions. For example, in yeast, changes in O2 concentration lead to changes in biomass composition

while keeping growth constant using a chemostat [22]. In mammalian cells, a change in a culture medium

leads to significant changes in lipid composition without having a considerable effect on the growth rate

[11].

2.4.2 Biomass composition varies across the cell

In the previous paragraphs, we considered average cells with a homogeneous composition across the cell.

However, wemust keep inmind that cells have an internal structure and that biomass components are not

uniformly distributed throughout the cell (as illustrated in Figure 2.4). Although prokaryotic cells do not

have compartments separated bymembranes, they have some internal organization. For example, DNA is

not spread across the cytoplasm, but wrapped around proteins and packed in a compact structure called

a nucleoid. Another example is the preferential localization of certain proteins on the poles in rod-shaped

bacteria. Eukaryotes have compartments with different compositions, pH, and membrane potential. DNA

is localized only in the nucleus and mitochondria, and many proteins localize only in a particular compart-

ment. Small molecules and ions also have different concentrations in the different compartments. Often

they cannot freely diffuse through membranes, but transport is regulated and requires energy.

These differences in concentrations have implications for cellular functions. Someprocesses are restricted

only to a particular compartment/area. For example, transcription only occurs in the nucleus and mito-

chondria (nucleoid), and somemetabolic pathways occur only in a specific compartment (e.g. tricarboxylic

acid cycle in the mitochondria). Even if the same enzyme is present in several compartments, it might

work at a different rate or in the opposite direction because of the different concentrations of substrates

or products. In eukaryotes, certain digestive enzymes only work at low pH present in lysosomes (thus

preventing a cell from digesting itself). Sometimes, consecutive enzymes in a metabolic pathway do not

Figure 2.4: These two cells have the same number of molecules but they are distributed differently. Al-
though the average concentration is the same in both cells, the second cell has varying concentrations in
different compartments.
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Figure 2.5: Number of molecules per cell in a population (for example protein or mRNA) – The red line is
the population mean, which is often the value we use (for modeling). However, the values at a single-cell
level can differ several fold.

freely float in a cell but form an assembly or bind to a scaffold, allowing intermediates to be channeled

directly from one enzyme to another. This accelerates metabolic reactions because intermediates do not

diffuse away into the bulk solution and are not consumed by competing reactions.

Finally, we need to zoom out from a single-cell (or average) view of a cell and consider the heterogeneity

at the population level. This heterogeneity is often neglected, and we use a single number to describe

a concentration of a molecule in a cell/compartment – an average value of the population. However,

biological processes are stochastic (noisy), and the actual molecule numbers follow a certain distribution

(Figure 2.5), which can be characterized by mean and variance. The effect of the heterogeneity becomes

especially important at low copy numbers.

The heterogeneity in molecule copy numbers leads to a heterogeneity in cell phenotypes such as gener-

ation time, cell size, stress tolerance, and others. The heterogeneity of the population can affect fitness

in a positive or negative way, depending on the conditions. For example, when a cell population encoun-

ters an unexpected environment, a certain subpopulation might be better suited to survive. In a different

environment, another subpopulation might thrive. We can view this as a microbial “bet-hedging” which

increases the chances that at least some part of a population will survive the new conditions. However,

when cells try to maximize the growth rate, the variability in the population can decrease fitness because

it decreases the average population growth rate [23]. This topic is discussed in detail in Chapter 12.

2.5 Macromolecule synthesis and the resources needed

In the previous sections, wehave explored thediversity of nature and the abundance of biologicalmolecules.

The combination of smaller building blocks into functional units, let it be proteins, membranes, or DNA

that conserves information about the organism, is the major stepping stone from unorganized pack of

molecules into what we could call a living system. Therefore, in this section, we will consider the coordi-

nation of how cell components are produced, focusing on the biosynthesis of macromolecules.

The overall cell growth can be called self-replication: a cell makes a copy of itself by synthesizing macro-

molecules by usingmolecules it either produces or takes up from the environment, all in the right amounts

and proportions. How, how fast and how big two cells rise from a single parent cell is the question we ex-

plore in our field, and often try to complement the experimental observations (what and in what amounts

produced) with computational models of growth (how and why like that).

In general, three essential types of resources are needed for the synthesizing ofmacromolecules: (1) small

molecule precursors, (2) catalysts, and (3) physical space/volume for the process to happen (Figure 2.6).

Wewill thus discuss how these resources are primed and used formacromolecule synthesis, together with

different considerations surrounding each type of these resources. We will first start with discussing the

“demand” side of the balance, requirement for the small molecule precursors of the cells, andwill continue
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Experimental methods 2.C Quantification of biomass composition

We can measure biomass composition at different levels of detail – from a coarse elemental or macromolecular

composition of an average cell to the quantities of individual molecules in each cellular compartment.

To quantify the main chemical elements (CHNOPS), we can use devices called elemental analyzers. The main

macromolecular components – the total protein, lipid, carbohydrate, DNA, and RNA content – can be quantified

with simple assays such as detection with fluorescent dyes, chemical reactions that lead to color change, or ex-

traction andweighing of a component. Going intomore detail typically requiresmore sophisticatedmethods such

as liquid or gas chromatography (LC, GC), mass spectrometry (MS) or nuclear magnetic resonance (NMR). For ex-

ample, for proteins, we can measure an average amino acid composition, and for lipids, the main lipid classes

(glycerophospholipids, sphingolipids, sterols, etc.).

If we go down to the level of individual molecules, we enter fields of study collectively termed as omics, which

aim to characterize and quantify certain pools of biomolecules. Omics methods typically involve high-throughput

measurements of hundreds or thousands of different molecules and require a lot of resources (specialized equip-

ment, computational resources) and expertise. The classic omics fields include genomics, transcriptomics, and

proteomics which study DNA, RNA and proteins, respectively. Other examples include metabolomics which fo-

cuses on small metabolites or fluxomics which measures metabolic fluxes (for example 13C metabolic flux analy-

sis).

Combinations of different omics can help us obtain other parameters that are difficult to measure. For example,

turnover numbers of enzymes (kcat) are notoriously difficult to quantify because the measurements are error-

prone and low-throughput. With proteomics and fluxomics data we can calculate apparent turnover numbers

(kapp) at various conditions (see Figure 2.9) and use the maximum value (kmax
app ) as an estimate of in vivo kcat [24].

precursors

enzymes
that make
precursors

"machines" that make
enzymes + themselves

Limited space

Coordination

Figure 2.6: The basic building blocks of cells are small molecule precursors – The precursors are needed
to make catalysts such as enzymes and machines. In turn, these catalysts synthesize both the precursors
and themselves, forming a self-replicating system. These processes need to be coordinated while being
constrained by space.

to zoom out towards the whole-cell economy of volume.

2.5.1 Precursors of macromolecules

Biosynthesis of macromolecule precursors (e.g. amino acids, nucleotides, energy equivalents) is an im-

portant part of every metabolic network. Many microorganisms can grow on a very limited number of

nutrients (in the laboratory context, the so-called minimal media), which usually consist of a single source

of carbon, nitrogen, phosphorus, and sulfur. For instance, a minimal growth medium with glucose as

the sole carbon source can fully support growth: glucose enters glycolysis as the main energy-harvesting

route; however, some of the glycolytic intermediates serve as substrates for, e.g. amino acid, lipid, or

nucleotide biosynthesis.

A particularly interesting fact is that metabolic networks can be described as bow-tie structures [25]: a

large variety of nutrients can be converted into a very small number (usually counted up to 12) essential

metabolic intermediates, which give rise to, again, a diverse set of molecules (for a detailed discussion,

see Chapter 3). This provides two important insights into metabolic networks. First, this plasticity of the

metabolic networks allows organisms to grow in various environments, where different nutrients are avail-
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Experimental methods 2.D Examples of biomass quantification methods

Component/parameter Examples of quantification methods

Cell size microscopically

Dry cell mass weighing of a defined amount of dry cells

Buoyant density Percoll gradient

Protein colorimetric (Bradford assay; Lowry assay)

Lipid weighing of extracted and dried lipids

Carbohydrates colorimetric (anthrone assay; phenol-sulphuric acid assay)

RNA fluorimetric (RiboGreen), spectrophotometric

DNA fluorimetric (PicoGreen, Hoechst), spectrophotometric

Amino acids/lipid classes LC/MS, GC/MS

Genomics next-generation sequencing (NGS) - Illumina, PacBio, Nanopore

Transcriptomics NGS (RNA-seq), DNA microarrays

Proteomics/metabolomics LC/MS, GC/MS, NMR

To visualize composition data, consider using Voronoi diagrams instead of the traditional pie charts or bar plots.

An online tool is available at bionic-vis.biologie.uni-greifswald.de for proteomics data, but there is also a tool that

works with any type of input data (GitLab repository on the book website).

Economics analogy 2.E Comparing the cell to a bakery

The diversity of metabolic intermediates/end products, stemming from small number of nutrients (e.g. minimal

mineral media for yeast growth, containing glucose, ammonium, phosphate and sulphate salts), can be imagined

as a bakery. Every pastry starts with a small array of ingredients (flour, water, salt, sugar, ...) and using some

machinery (e.g. ovens), one ends up baking bread, pretzels, cookies, muffins etc., which are way diverse in their

features, compared to the starting mixture. Likewise, by taking only a handful of compounds, cells, especially

microorganisms, can synthesize most of the molecules they need to eventually replicate.

able. Second, because of this organization, the biosynthesis of macromolecule precursors competes for

the same starting molecules independently of the initial nutrients.

2.5.2 Catalysts needed for macromolecule synthesis

Many steps of the biosynthesis of macromolecules, as discussed previously, need catalysis to proceed.

Therefore, another kind of investment into macromolecule synthesis is expression of necessary proteins

and RNAs (in the latter case - ribosomal RNA). Expression of proteins, starting from transcription of mes-

senger RNAs, their translation into proteins, folding, and degradation, involve many steps with energy

investment (ATP hydrolysis) and consume large amounts of precursors (nucleotides, amino acids). Talking

in energetic terms alone, protein expression accounts for about 40% of energy investments in yeast S. cere-

visiae [26], and the energy investments for every stage of protein expression are illustrated in Table 2.2 for

typical bacterial and eukaryotic cells. This concerted action of several systems, as described above, with

substantial investments at every intermediate step, means that these investments thus happen on two

levels: investments in the metabolic machinery and in the machinery, producing proteins themselves. We

will consider these two levels in the following.

Metabolic enzymes. First, metabolic enzymes need to be expressed to convert nutrients into biosynthe-

sis precursors. Some enzymes are active only in a form of complexes, which also creates a demand to

express proteins at defined ratios. Enzymes and their complexes come in different sizes and flavors, and

their activity can be described (in very coarse-grained way, for more details see Chapter 3) by two kinetic

http://bionic-vis.biologie.uni-greifswald.de/
https://gitlab.com/principlescellphysiology/principles-cell-physiology/-/tree/master/open-code?ref_type=heads
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Figure 2.7: Distributions of the kcat andKM values (in s−1 andmM , respectively), collected for E. coli, yeast
and human enzymes – The vertical solid line depicts themedian of each distribution. Values were collected
from the BRENDA database, release 2022.1 [29].

aspects: the efficacy (represented by the turnover number kcat) and substrate specificity (Michaelis con-

stant KM) of an enzyme. Importantly, these two parameters are intertwined: high substrate specificity

usually comes at the cost of efficacy and vice versa. Therefore, although some enzymes tend towards

extremes in terms of their specificity or efficacy, most of the enzymes land close to the average/median

values of these parameters, when considering the distribution of enzyme parameters among different

organisms [28] (Figure 2.7).

The metabolic networks need to work in a concerted manner, even though different enzymes need to

perform different amounts of “work” (described as metabolite flux through these enzymes, v). Thus, even

given the similarities in “average” (or “moderate”) enzyme properties, the expression of proteins and the

abundance of their substrates span several orders of magnitude. Based on the kinetic interpretation of

enzyme kinetic parameters, we can link them to either expression level of the enzyme e (e ∝ v
kcat

) or sub-

strate concentration s (usually, 0.1KM ≤ s ≤ 10KM). Note that for substrate concentrations, the suggested

range (order-of-magnitude difference from the KM to each side) is arbitrary, yet supported by empirical

observations. On the higher end, the benefit from high substrate concentration becomes negligible (sat-

uration kinetics) as the concentration moves from the order of magnitude of KM (see Exercises for an

example). The lower bound of concentrations is defined through high demand of enzymes: in order to

sustain flux, a lot of enzyme would have to be produced. As cells have a finite volume to accommodate

Expression stage Bacteria Eukaryotes

DNA synthesis 101 Lg 263 Lg (×2 for diploids)
RNA transcription 2 Nr Lg(23 + δrt) Nr(46 × Lr,mat + 2.17 × δrtLr,pre)
Protein synthesis NpLp[(c̄AA − 1) + 5δpt]

Table 2.2: The estimated energetic costs (units of ATP hydrolysis) of biosynthesis of a gene, as computed
by [27]. The estimates are represented as functions of the following parameters: Lg , gene length; Nr ,
the steady-state number of mRNAs; Lr,pre and Lr,mat, the length of precursor and mature mRNA, respec-
tively; δr , the degradation rate of mRNA; t, division time of a cell; Np, the steady-state number of protein
molecules; Lp, length of the protein chain; c̄AA, average cost of an amino acid; δp, the degradation rate of
proteins.
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(A) Methionine dropout (B) Complete medium

Figure 2.8: Proteome composition of E. coli, grown on the growthmediumwith full amino acid supplement
(B) or its version without amino acid methionine (A). Proteome composition data from [30].

proteins, such a strategy works only for a very small number of enzymes. Taken together the limitations

on the both sides of the spectrum, enzyme kinetics set the bounds for the concentrations of metabolites

in the cells.

To illustrate the diversity of enzyme turnover values kcat and the condition-dependent expression of en-

zymes (dictated by the flux v these enzymes have to sustain), we can consider the proteome composition

of E. coli under two conditions: growth medium with the complete supplement of amino acids (all 20

proteogenic amino acids present in medium), in contrast to the supplement with a single amino acid not

present in the mix (a “dropout” medium) (Figure 2.8). The growth of E. coli in a nutrient-rich medium (glu-

cose + amino acid supplement) is indeed a very fast one (with doubling time of τd,rich = 21.5 ± 0.4 vs.

τd,minimal = 56.3 ± 0.5 minutes). The omission of methionine from the amino acid supplement does in-

crease the doubling time (τd,−Met = 26.5 ± 1.1 minutes), yet the growth rate remains high, and so is the

methionine biosynthesis demand in these conditions.

Methionine is an amino acid that is energetically the most expensive to make [31], and the final enzymatic

reaction in the methionine synthesis pathway is so-called rate-limiting, or the reaction which dictates the

flux through the whole pathway. Moreover, the enzyme methionine synthase (MetE) is a very slow en-

zyme (Figure 2.8, table on the bottom), thus required at large quantities to provide enoughmethionine for

protein synthesis at high growth. Consequently, it was observed that MetE alone could occupy up to ca.

7.5% of the total proteome (by mass) in medium lacking methionine, and growth on amedium, containing

methionine, would reduce the proteome fraction by ca. 800-fold, to 0.009% [30]. To contrast this highly

condition-dependent expression of MetE, we considered a protein in the lower glycolysis, enolase (Eno)

(Table 2.3). The expression of glycolytic proteins, including Eno, was determined to be similar, as both

the complete- and the methionine-free media contained glucose as the main carbon source. A noticeable

contrast of Eno vs. MetE is also a ca. 3 orders-of-magnitude higher kcat value compared to the one of

MetE: having to invest less (per mass) into this enzyme contributes to the ability to sustain a very high flux

through enolase when cells grow fast on glucose [30] (see Chapter 6 for a more detailed discussion).

The variable concentrations of metabolic substrates, and their relation to the enzyme parameters (KM

in this case), also bring additional kinetic considerations. The above-introduced turnover value kcat rep-

resents the highest possible efficacy of the enzyme, where all substrates are accessible in concentration
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low kapp increasing kapp kapp   kcat

Figure 2.9: The relation between the apparent and measured turnover value (kapp and kcat, respectively)
– Factors, leading to low net rate of reaction per unit of protein (e.g. low substrate concentration) lead to
kapp being significantly lower than the measured kcat value, latter of which corresponds to the maximal
rate of the reaction.

needed to sustain this efficacy (also called saturating concentrations). Turnover values are usually mea-

sured in vitro, with all the substrates highly in excess, thus deliberately minimizing many kinetic effects

(enzyme saturation, reversibility of reactions, etc.) that are prevalent in more physiological conditions

(see Chapter 3 for details). Therefore, what we usually observe in living cells is not the enzyme efficacy in

terms of kcat, but rather their apparent turnover value kapp (Figure 2.9). The ratio of these values (
kapp
kcat

) is

then called the enzyme efficiency and can be used to infer how far the enzyme is from its optimal work-

ing conditions. The kapp value of an enzyme in vivo can be computed as follows: knowing the kcat value,

the flux through the reaction, one can calculate the minimal demand (in moles) of the enzyme to maintain

that flux. Then, the kapp value can be computed by taking the ratio between the predictedminimal enzyme

demand and the abundance of enzymes in the cells.

Macromolecule polymerization. Moving from metabolic enzymes to macromolecular synthesis machin-

ery, the polymerization of macromolecules (DNA replication, RNA transcription, and protein translation)

is catalyzed by large enzyme complexes (and RNA, in the case of ribosomes). DNA and RNA polymerases

(DNAP, RNAP) and ribosomes. The resources needed for their expression also contribute significantly to

the total costs of macromolecule biosynthesis. For example, themolecular weight of an intact ribosome in

E. coli is ca. 2.3 MDa (BNID 111560), and the E. coli ribosome consists of 62% RNA and 38% protein (in mass

%, BNID 109047). Meanwhile, eukaryal ribosomes are even larger, ca. 3.3 MDa for S. cerevisiae and ca. 4.3

MDa for human H. sapiens (BNID 111560), and have higher protein content [32]. For a comparison, the

average length of a protein in E. coli is ca. 300 amino acids (BNID 100017) and average amino acid weight

is ca. 109 Da (BNID 104877). By multiplying these numbers, the molecular mass of an average protein is

ca. 32.7 kDa, roughly 70× lower than the ribosome that synthesizes this protein.

The nature of these large complexes requires an exceptional coordination of resources. The first consider-

ation is the number of individual proteins that form these complexes: the RNA polymerases of S. cerevisiae

contain up to 17 subunits (BNID 111568), and 79 ribosomal proteins form a fully functional ribosome [33].

Therefore, the assembly of these complexes must be fast and robust: Thus, cells contain a number of

assembly factors to facilitate these processes. Next, the coordination also has to be temporal, especially

for prokaryotes, where both messenger RNA transcription and protein translation can happen simulta-

neously. In E. coli, this is well illustrated by the 3-fold difference between elongation rates of mRNAs and

proteins, ca. 62 nt s−1 and 21 aa s−1, respectively (BNID 103021, 107868). This coordination is essential

Pathway Enzyme Proteome mass fraction (%) kcat (s
−1)

Met dropout Complete

Glycolysis Enolase (Eno) 0.53 0.53 192.95
Amino acid biosynthesis Methionine synthase (MetE) 7.45 0.009 0.12

Table 2.3: Abundance and kcat values of two selected proteins from Figure 2.8: enolase (independent on
amino acid supplementation) and methionine synthase (dependent on amino acid supplementation).
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for coordinated transcription and translation happening at the same time [34], as translation happens in

steps, 3 nt each (so-called triplets). Even in eukaryote S. cerevisiaewe observe a similar pattern: mRNA elon-

gation rate of ca. 30 nt s−1 (BNID 103016) and protein chain elongation rate of ca. 10.5 aa s−1 [35], nearly

a 3× difference. Also, the polymerization of macromolecules is very tightly connected to the metabolism:

different kinds of growth limitations (limiting amounts of nutrients) were shown to create bottlenecks at

different stages of protein expression [36], and the optimal regulation of these processes were selected

for by the evolution [37, 38].

2.5.3 Physical proteome space

A final type of asset required for macromolecule synthesis is the physical volume in the cell. As the cells

are, again, “bags of things”, they possess a finite volume, thus different processes compete for available

proteome volume (also called “proteome space” interchangeably). A general trend acrossmicroorganisms

is that ribosomes occupy larger proteome mass fraction (in the range of 10-40% total proteome) with in-

creasing growth rate [19, 39], with an estimated maximum in E. coli of ca. 55% of total proteome mass

[19]. Alongside ribosomes, biosynthetic pathways also occupy a substantial share of total proteome (e.g.

enzymes, required for amino acid biosynthesis occupy up to 15% of the proteome space in S. cerevisiae

[39]). Experimentally, the optimal allocation of proteome space can be challenged by, e.g. varying expres-

sion of an unneeded (gratuitous) protein. Both for E. coli and S. cerevisiae it was shown that increasing

gratuitous protein expression directly affects the maximal growth rate on both minimal and rich media

[40, 36], suggesting that the decrease in growth rate is not dependent on the nutrient status of the cell.

Numbers provided above were measured for cells, grown in minimal medium, and some of the costs we

discussed - not only proteome space, but also precursors and enzymes - could be alleviated by growth

in rich medium. Uptake of biosynthetic precursors usually is less costly than biosynthesis, as expression

of a single type of transporter can substitute the need of expressing a biosynthetic pathway with tens of

enzymes associated. Indeed, transfer of S. cerevisiae cells to a amino acid-rich growth medium resulted in

an increase of growth rate, caused by increased proteome allocation to ribosomes, in place of the proteins

of de novo amino acid biosynthesis [41]. In conclusion, the physical space that proteins can occupy is also

an asset that the proteins are competing for, and thus the optimal allocation of the available space is key

for the cells to grow in the most favorable way under specific conditions.

2.6 Physicochemical considerations about cells

2.6.1 Cell density

Most cellular parameters we discussed so far – cell size, mass, and composition – vary greatly with the

cell type, growth rate, or conditions. However, one quantity does not show such variability – buoyant

cell density. Buoyant density is the ratio of cell mass to volume, usually expressed as g mL−1. For most

organisms, prokaryotic or eukaryotic, the buoyant cell density is around 1.05-1.15 g mL−1 [42, 14]. This

range results from the fact that cells are 70%water which has a density of 1 g mL−1 and thatmost drymass

is formed by proteins, which have a density of 1.2-1.4 relative to water (BNID 111208, 104272, 101502).

Other components range from 1 for lipids (BNID 108142) to 1.4-2 for nucleic acids (BNID 111208). To try

the calculation of bacterial density, see Problem 2.4.

For many organisms (E. coli, the yeast Schizosaccharomyces pombe, Chinese hamster ovary cells, mouse

cells), cell density is constant throughout the cell cycle and at different growth rates when growing expo-

nentially. However, it was observed to increase in stationary phase for E. coli and S. pombe [42, 43]. On the

other hand, the density of S. cerevisiae fluctuates during the cell cycle, whichmight be related to a different

division mode. The organisms mentioned earlier divide by binary fission – cells divide in the middle and

produce two (roughly) identical daughter cells. In contrast, S.cerevisiae divides asymmetrically - it grows a

bud that breaks away and becomes a smaller daughter cell.
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Nevertheless, despite the variability, the range of the observed values is relatively small and similar for

most organisms, from bacteria to mammalian cells. There are special cases where cell density deviates

from the characteristic values – for example, cells with very high fat content or gas bubbles have lower

densities. However, assuming the density of 1.1 g mL−1 is probably a good guess unless you work with a

particularly fatty or gassy cell type.

The invariability of cell density suggests that this property is highly regulated and brings us to the next

question – is there an optimal density? And what are the constraints that (possibly) determine this opti-

mum? These questions (among others) are discussed in the next section.

2.6.2 The physical constraints of cell growth

The living cells are constantly subject to a handful of so-called physical constraints, which are directly linked

to the physics and the chemistry of life. Cells cannot override (evolve to bypass) these limits – only try

to cope with them. Thus, sometimes these constraints are also called “hard” constraints. Notice that we

consider the “hardness” of these constraints only in the space where conditions can still sustain life: some

of these limitations could be relaxed by changing abiotic conditions, but would result in breakdown of

biological systems.

One of the abiotic factors would be temperature; however, increased temperatures cause proteins to de-

nature (lose their 3D-folded structure, thus functionality) and destabilize biological membranes. Although

there are organisms, which live in extremely high temperatures (so-called thermophiles), as a rule of thumb,

we usually consider the temperature above 393 K (120 ◦C) to be close to the limit of life. There is an or-

ganism known as Strain 121 (Geogemma barossii) which can grow at 121 ◦C (hence the name), currently

the highest temperature known [44]. Next, the suboptimal concentration of inorganic salts (osmolarity) or

pH could also drive similar changes, disfavoring life. Here we will consider two prominent physical limits

in life: the diffusion and density limits. These two limits describe two aspects of how molecules move in

aqueous environments, in our case – living cells.

The diffusion limit describes the state where enzymatic catalysis is so specific and so fast that the reac-

tion speed is determined only by the collisions of substrate molecules to the enzymes, which all result

in conversions (i.e. no futile collisions) [45]. Usually, the number of futile collisions vary between 1 and

104 per successful conversion, and thus having as little futile collisions as possible greatly enhances the

overall rate of the reaction. Enzymes approaching (operating at) the diffusion limit are also called perfect

enzymes. Currently there are no enzymes reportedwhich are considerably “above” diffusion limit (see [45]

for an in-depth discussion), suggesting the universality of the underlying constraint. Nonetheless, cells do

have a strategy to counter the diffusion limit. Consecutive enzymes from a pathway can be placed on a

scaffold, which allows the product of one reaction to be channeled directly into the next reaction without

diffusing away.

Another aspect to consider is the density, or sum concentration of molecules, of the fluid. As described in

previous sections, cell cytosol contains a spectrum of different molecules at different sizes and concentra-

tions. We normally assume that some sort of optimal cell density that maximizes fitness exists, however,

the density is known to fluctuate substantially in time and across conditions [46]. One of the most preva-

lent properties, linked to cytosolic density, ismacromolecular crowding. As the name suggests, it describes

the concentration of biological macromolecules, mainly proteins, in cytosol (thus in bacteria, the genomic

DNA also contributes to molecular crowding). For example, the macromolecular crowding is suggested

to impose a limit on the protein translation [47], therefore, increased crowding would result in a growth

rate decrease. The state of macromolecular crowding is relevant for the cellular function, and is proposed

to be in homeostasis (reviewed in [48]): optimal macromolecular crowding corresponds to a state where

crowding reduces the path proteins have to diffuse, yet does not substantially decrease the speed of dif-

fusion. In such a way, maintaining highmacromolecular crowding is suggested to maximize reaction rates

in the cytosol [49].
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2.7 Concluding remarks

In this chapter, we discussed the properties and the quantities of the main cellular components, how the

composition changes in different environmental conditions, and what resources are needed for a cell to

replicate itself. It may seem that we already have a vast amount of data, but a lot is still missing. Most

available data comes frommodel organisms such as E. coli, S. cerevisiae, or humans, but the data for other

organisms is still limited. Single-cell data (ideally with subcellular resolution) is also not widely available.

Even though we can sequence a genome within a few hours or days, we still do not know the functions of

many genes. Many experiments still need to be done, and new high-throughput experimental methods

developed to fill the gaps in our knowledge.

Nevertheless, with the basic knowledge from this chapter, we can dive deeper into studying cellular eco-

nomics and resource allocation with mathematical modeling. How is biomass represented in mathemat-

ical models? Often, models only focus on proteome as it is a cell’s most abundant and expensive com-

ponent. However, some models also include other major components (RNA, DNA, lipids, carbohydrates,

cofactors, etc.). The components can be modeled at different levels of detail. For example, the cell pro-

teome can be represented simply as a total proteome, divided into protein subgroups (e.g. metabolic,

ribosomal, other), or modeled as individual proteins. Finally, there are two contrasting ways to include

biomass in mathematical models. On the one hand, some models consider a fixed biomass composition

based onmeasurements or literature (see Chapters 4 and 5). On the other hand, somemodels predict the

biomass composition (i.e. they calculate optimal resource allocation or enumerate all possible composi-

tions, see Chapter 9).

Apart from biomass composition, we can include other cellular properties as constraints or parameters in

the models, depending on the type of a model and how detailed it is. For example, we can constrain the

transcription/translation rates, enzyme turnover rates, cell surface area or volume.

In conclusion, this chapter introduced the basic building blocks of a cell, processes that make them, how

they are coordinated and how they depend on environmental conditions. In the next chapters you will

learn how to translate this information into mathematical models and how to use them to gain deeper

knowledge of cell biology.
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◦ Milo, R., & Phillips, R. (2015). Cell biology by the numbers. Garland Science.

Problems

Problem 2.1 Intuition for biological numbers

Try to answer the following questions, and only then look up the results:

◦ What is the volume of a cell?

◦ What is the size of a protein?

◦ What is bigger, a protein or the mRNA that encoded it?

◦ How many protein molecules are there in a cell?

◦ What is the number of genes in a genome?

◦ How long does it take to transcribe a gene?

◦ How long does it take to produce a protein molecule?
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◦ What is the minimal doubling time of a cell?

◦ What other questions come to your mind?

Precise values do not matter here – think about orders of magnitude.

Problem 2.2 Proteins per cell - estimate one

How many proteins are there in a bacterial/yeast/mammalian cell [14]? Use data from the following

table:

Protein mass per volume 0.2 g mL−1

Molecular mass of a protein 40000 g mol−1

Avogadro’s number 6 · 1023 1/mol
E. coli volume 1 µm3

S. cerevisiae volume 60 µm3

Mammalian cell volume 3000 µm3

Problem 2.3 Proteins/ribosomes per cell - estimate two

A typical protein has a volume of 25 nm3 (BNID 101828) and a ribosome 3400 nm3 (BNID 104919). Given

that 70% of a cell volume is water, what is the maximum number of protein/ribosome molecules that

fit into a typical E. coli cell (see Table 2.2)? Compare your answers with the previous problem/values in

BioNumbers database.

Problem 2.4 Buoyant cell density

Calculate the buoyant density of a typical bacteria using the following data:

Component Density (g mL−1) Mass fraction per cell

Water 1 0.7
Proteins 1.3 0.18
Nucleic acids 1.7 0.08
Lipids 1 0.03
Carbohydrates 1.5 0.01

Problem 2.5 Concentrations enzymes and substrates

Dourado et al. [50] suggested that there is a relationship between the concentrations of enzymes and

their substrates in E. coli, which is a result of a constraint on the biomass density. They showed that the

reaction flux ismaximal when the drymass of each substrate is equal to the drymass of the unsaturated

(free) enzyme. What is the concentration of one enzyme per cell for E. coli (in mol L−1)? What would be

the optimal concentration of its substrate? Use protein mass and cell volume from Problem 2.2 and the

mass of glucose as substrate.

Problem 2.6 Cell size in different dimensions

Imagine a spherical cell that increases its diameter from 1 to 2 um. How much do the surface area,

volume, and SA/V change? Think about how this could influence the import of nutrients and the dif-

fusion across the cell.

Problem 2.7 Alien lifeforms

Imagine alien lifeforms. Would they be composed of cells? Why? What features of cells could be com-

pletely different? What features are so much dictated by physics that they could not be different in any

type of alien cell?

Problem 2.8 Substrate demand to saturate an enzyme

Take the following rate law: v = vmax
S

KM+S
(also known as irreversible Michaelis-Menten rate law, see

Chapter 3), where vmax is the maximal reaction velocity. Plug in the values for v and compare the sub-
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strate concentration needed for the reaction rate to increase from (i) 10% to (ii) 90% of the maximal rate

vmax. Hint: express the S in terms ofKM and take the ratio.



Chapter 3

Cell metabolism

Hadrien Delattre, Elad Noor, Herbert M. Sauro, Orkun S. Soyer, Robert West

Chapter overview

This chapter introduces cell metabolism as a dynamical system. While the previous chapter gave an

overview of the constituents of this system, i.e. enzymes, metabolites, etc., this chapter focuses on

conceptual abstraction of the metabolic system as a whole and how to model its dynamics over time.

The key areas introduced are:

◦ Conceptualizing cell metabolism as a dynamical system

◦ Dynamics and regulation of metabolism

◦ Toolbox for modeling dynamics of metabolism - biochemical reaction rate equations and their

derivations

◦ Dynamics of metabolism: Examples of experimental evidence and model-based explanations

◦ Mathematical derivations and example models

3.1 Conceptualizing cell metabolism as a dynamical system

Cell metabolism is a dynamical process that converts available metabolites from the environment into

biomass and other products. Themetabolism of a typical cell involves thousands of biochemical reactions

andmetabolites. What would be a useful way to think about such a complex, dynamical system? We need

a conceptual picture of metabolism to help us formulate more specific ideas about how it functions, how

it can be manipulated, or even how it has evolved. Here, we first highlight a few such ‘pictures’, or ways of

thinking about metabolism.

Below we will switch back-and-forth between a high-level view on metabolism, considering all of it, and a

more focused, low-level view focusing on modeling individual reactions or small sets of reaction systems

(e.g. pathways or motifs). These two viewpoints constitute two ends of a wide spectrum, and our aim

in jumping back-and-forth between them is to allow the reader to obtain the skills to model dynamics

of reaction systems that make up metabolism, while at the same time to invite them to think about the

overall function of the metabolic system.

3.1.1 Metabolism as a collection of pathways

The common and historical view of a ‘metabolic system’ stems from pioneering biochemical studies from

the 1930s onwards, which identified collections of reactions as so-called ‘pathways’ [51]. Known mostly

through the names of their discoverers, these include the Entner–Doudoroff (ED), Embden–Meyerhof–Par-

35
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Figure 3.1: A map of central metabolism in Escherichia coli bacteria – The diagram shows the reactions,
metabolites, co-factors, and enzymes, as well as a few selected carbon sources and their catabolic path-
ways.

nas (EMP) and pentose-phosphate (PP) pathways involved in glucose uptake and conversion into pyruvate,

and the Krebs pathway (a.k.a. tricarboxylic acid cycle, TCA) involved in the conversion of pyruvate into

amino acid, nucleotides, and biomass precursors [52]. This ‘pathway-centric’ view of cell metabolism lends

itself readily to an assembly line analogy and the notion of (linearly) connected pathways (see Economic

analogy 3.A).

Pathways, yes, but not so linear! The identification of well-established pathways and the subsequent

focus upon them gives the false impression that cell metabolism consists of a series of neatly organized

and serially connected pathways. This impression is facilitated by pictures of isolated linear pathways,

common in textbooks and even research papers. In reality, these pathways are highly interconnected

with other pathways (Fig. ??).
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Economics analogy 3.A Metabolism as an assembly line

We canmake an analogy that presentsmetabolism as an assembly line in a factory. Metabolites enter the line from

outside the cell and are processed – i.e. acted upon by enzymes – to create new metabolites that are ultimately

incorporated into cellular biomass. This picture is reinforced by the common textbook illustration of metabolism

as a set of isolated pathways that are placed ‘upstream’ or ‘downstream’ of each other, and that ‘produce’ or

‘consume’ outputs for each other. A key shortcoming of this analogy is that it conveys a picture in which events

are strictly linear and progressive in their nature, ignoring the cyclic and inter-connected nature of metabolism

(Fig. ??). Despite this shortcoming, this analogy captures the point that the flux of materials through the system

can attain a ‘steady-state’ of equal in- and out-flux across individual reactions (see further discussion of the steady-

state concept in the main text). One important difference however between an assembly line and metabolism is

that the rate at a given assembly stage in a factory is not a function of howmany units are waiting to be processed

because factorymachines tend run at fixed rates. Inmetabolism, the rate of a reaction is a function of the substrate

concentration until saturated. This leads to distinctive behavior not found in factory assembly lines. Another

important difference with a factory assembly line is that unlike an assembly line, metabolism in some cases is

able to in both directions along the line. The most well known of these is the bidirectionality of the glycolytic and

gluconeogenic pathways.

Part of these interconnections within metabolism arise from co-substrates and specific metabolite pairs

that participate in many reactions. For example, co-substrates such as ATP and NADH link many parts of

metabolism through reactions in which they are generated or consumed (Fig. 3.2), while the glutamate

- α-ketoglutarate pair is involved in the TCA cycle as well as acting as a group donor in all amino acid

biosynthesis pathways.

The pathway view provides a useful starting point to think about metabolism, but a complete understand-

ing of metabolism dynamics and metabolic phenotypes requires us to come to terms with the highly con-

nected nature of these pathways (see below, Box 3.C).

NADH

NADH

NADPH

Glycolysis

PP-pathway
Fermentation

N ass. AA synthesis

TCA cycle

To respiration via
mitochondrial shuttles

To GSH and
other
antioxidants

Ethanol

Acetaldehyde

Pyruvate

Acetyl-CoA

Glutamate aKg

Glycerol

Respiration

Figure 3.2: A simplified map of central metabolism, particularly highlighting interconnections among dif-
ferent processes (i.e. pathways) through the NAD(P)+ / NAD(P)H co-substrate pair.
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3.1.2 Metabolism - coarse grained views

The highly connected nature of metabolismmakes it difficult to understand its overall dynamics just from

individual pathways. It also makes it hard to conceptualize metabolism as a single, linear process, or as

serially connected pathways. Here, a coarse-grained viewpoint, focusing on the overall function of cell

metabolism, might prove helpful. There have been several such views developed, with two highlighted

here.

Metabolism as biomass generator. A widely applied coarse-grained view of metabolism considers it as a

vehicle to biomass production. In this view, metabolism is considered as two coupled processes, one pro-

ducing energy and compounds that can act as building blocks (e.g. amino acids), and one that uses these

to create larger macro molecules (e.g. proteins and lipids) needed to make a new cell. These two pro-

cesses are called catabolic and anabolic metabolism respectively, and their coupling presents the whole

cell metabolism (Fig. 3.3 A). This coarse-grained model is widely used (e.g. [52, 53]. However, it is not al-

ways clear how to partition various pathways and reactions as anabolic and catabolic, and the notion of

metabolism organized solely to satisfy for biomass production does not capture certain metabolic pheno-

types, such as no-growth states or excretion of high-energy metabolites (i.e. metabolic overflow).

Metabolism as electron flow. An alternative coarse-grained view of metabolism is obtained from a more

chemical standpoint. When one writes down an overall reaction for cellular metabolism, considering com-

pounds taken up from the environment and created at the end of various metabolic processes, one real-

izes that this is a redox reaction, a type of reaction where electrons are exchanged between participating

reactants (see Fig. 3.3B and Box 3.B). This means that the actual reactions within metabolism that en-

able this overall reaction must compose also of some redox reactions. In other words, we can argue that

metabolism consists of (besides other reactions) a series of redox reactions that enable flow of electrons.

Metabolism is thus an inter-connected system of reactions that allows flow of electrons from readily ox-

idized compounds (electron rich compounds with low or negative reduction potentials) towards readily

reduced compounds (electron poor compounds with positive reduction potentials) [54, 55]. (Fig. 3.3B). As

the Nobel laureate Albert Szent-Györgyi (1893 – 1986), who studied the TCA cycle and discovered vitamin

C biosynthesis pathways, once said, “Life is an electron looking for a place to rest.”.

Emphasizing its redox reactions, the metabolic system can be visualized on a reduction potential chart,

which is sometimes called a ‘redox ladder’ (Fig. 3.4 and box 3.B). This potential chart shows reduction

potential of redox half reactions (usually in reduction direction) and allows us to readily visualize the ther-

modynamic feasibility of redox reaction pairs. The chart is ordered in such a way that any reduction half

reaction can be pairedwith any other placed below it, resulting in a thermodynamically feasible redox reac-

tion, but not with those above it. We notice that cell metabolism, in order tomaintain electron flows, needs

to maintain thermodynamic feasibility of the overall and all intermediate reactions. The key requirement

for this is to have access to electron donors (e.g. carbohydrates) and terminal electron acceptors (e.g. oxy-

gen). One must also note that the redox ladder depicted in Fig. 3.4 is derived for standard concentrations

of metabolites, whereas the reduction potentials would depend on actual concentrations in the cell.

3.1.3 Keeping flows in a system of interconnected fluxes

It is noticeable that both coarse-grained views presented above involve interconnected fluxes that ulti-

mately enable an overall flux. In the biomass-based view, the flux between catabolism and anabolism is

connected to enable flux into biomass. In the electron-flow based view, there is again a set of intercon-

nected flows to enable the overall electron flow from initial donors (e.g. glucose) to final acceptors (e.g.

oxygen).

The interconnection of fluxes inmetabolism ismost clearly visible in reactions involving co-substrates, such

as NAD(P)+ / NAD(P)H and ADP/ATP pairs (see below, Box 3.C). The NAD(P)+ / NAD(P)H pairs form either

the oxidation or reduction half-reaction in various redox reactions thereby enabling the aforementioned

electron flows within the metabolic system. The ATP+/ADP pair forms an energy carrier, providing driving
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Figure 3.3: Coarse-grained models of cell metabolism – (A) A conceptual drawing of cell metabolism as
provider of precursors (catabolism) and generator of biomass from those (anabolism). (B) A conceptual
drawing of cell metabolism as enabling an abstract redox reaction between a pair of electron donors and
acceptors. The electron donor can at the same time be the carbon source for biomass generation, or
there can be a separate ‘carbon-donor’. This overall redox reaction is an abstraction, in the sense that
in real metabolism electrons are not directly transferred from the original donor to biomass precursors
but rather there are many intermediary redox reactions such as those involving key carrier co-substrate
metabolite pairs NAD(P)+/NAD(P)H.

energy to reactions that would be thermodynamically infeasible (see section 3.2.1 below onwhat wemean

by this). This pair is seen as forming the flux connection between catabolism and anabolism, where the

former is considered to result in ATP production, and the latter is considered to consume this.

Co-substrates are thus essential in connecting different fluxes, and therefore processes, withinmetabolism

and their dynamics must be important to keep overall metabolic flow. It is tempting to speculate that

key co-substrates might be an evolutionary outcome that ensures stable electron flows in the face of

changing conditions. While this possibility is difficult to prove or disprove, it is interesting to note that

the NAD(P)H/NAD(P)+ pairs can attain a broad range of reduction potentials that could enable their redox

partnering with many of the different reaction types found in cell metabolism [57] - in other words, these

two redox pairs seem to be a versatile tool to connect a wide range of redox reactions to each other and

ensure electron flows.

3.1.4 Metabolic system and recurring motifs

Within the highly inter-connected system that ismetabolism, specific reaction arrangements seem to recur

frequently, so-called “reaction motifs”. We have already mentioned the cyclic reaction systems, involving

co-substrates as one such motif. Other reaction motifs that have been highlighted include autocatalytic

cycles [58] and branch points [59]. As we will discuss below, these reaction motifs can give rise to specific

nonlinear dynamics and act in auto-regulatory capacity or create constraints on the metabolic system. In

general, however, it is difficult to ascertain the evolutionary significance of reaction motifs. While auto-

mated approaches, involving graph theoretical analysis of metabolic systems represented as networks,

highlighted certain metabolic motifs as significant compared to random networks, it was subsequently

shown that this result is dependent both on the original network representation used and the random-

ized networks used for comparison [60].
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Physics box 3.B The redox ladder in metabolism

We can highlight the overall redox reaction

implemented by the cellular metabolism

further, by writing it as two separate reac-

tions consisting of an oxidation reaction

(involving a molecule releasing electrons)

and a reduction reaction (involving a

molecule accepting electrons) (see Fig. 3.3).

The feasibility of the paired, overall redox

reaction can be measured by the Gibbs’ free

energy, or the closely related reduction po-

tential, where a positive reduction potential

(or a negative Gibbs’ free energy) indicates a

thermodynamically feasible reaction. Thus,

a redox reaction with a positive reduction

potential implies electrons ‘flowing’ from

a molecule with high reduction potential

towards that with a low reduction potential

– a point that can be visualized using a

“reduction ladder”, a chart of reduction

potentials (Fig. 3.4). Notice that considering

redox reactions as composed of individual

reduction and oxidation reactions is merely

a conceptualization, however, this provides

a useful analogy in which we can view a

metabolic system as enabling the flux of

electrons across many reactions, and be-

tween an initial electron donor and a final

electron acceptor [51]. While glucose and

oxygen are possibly the most well-known

electron donor and acceptor pairs, cells, es-

pecially microbial cells, can use a wide-range

of donors and acceptors, including nitrogen

and sulfur containing compounds, thereby

contributing significantly to biogeochemical

cycles of these compounds [56].
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3.2 Reaction thermodynamics and enzyme kinetics

Independent of our conceptual views on metabolism, the fact remains that the metabolic system involves

flux of matter. A myriad of metabolites are combined, converted, broken apart, and re-assembled. These

biochemical reactions are catalyzed by enzymes so to improve kinetic rates, and the entire system must

obey the laws of thermodynamics (more on these later in section 3.2.1). In summary, metabolism consti-

tutes a ‘system’ of metabolites and their reactions, together with enzymes. Its dynamics over time ensures

fluxes of matter.

3.2.1 Biochemical reactions and thermodynamics

Metabolism consists of individual biochemical reactions of the form:

νaA + νbB −−⇀↽−− νcC + νdD (3.1)
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Figure 3.4: Metabolism on a redox ladder – Cartoon representation highlighting the role of electron flows
through redox reactions for a functioning metabolism, and a reduction potential chart listing key redox
reactions found in cellular metabolism. Notice that the reduction potential chart shows reduction po-
tentials of half-reactions in the reduction direction and using metabolite concentrations under standard
conditions, hence the actual potentials would be different and dynamically changing within the cells. A
thermodynamically feasible reaction would need to combine one half reaction (run in reverse, oxidation
direction) with another one lying below it (i.e. at a higher reduction potential). Two example feasible redox
pairs are shown with the blue and red data points.

Physics box 3.C Cyclic reaction motifs

The involvement of co-substrate and key metabolites results in the coupling of many different parts of the

metabolism and in the emergence of cyclic reaction systems - for example, by connecting different parts of the

metabolism, the NAD(P)H/NAD(P)+ pairs result in cycling between their different forms. This means that in order

to capture the concentration of all the other molecules involved in these reactions, we need to consider dynamics

of a series of intertwined cyclic reaction systems, rather than linear pathways akin to an assembly line. Indeed,

it has been argued that cyclic reaction motifs should form the basis of developing a dynamic understanding of

cell metabolism [61]. It must also be noted that co-substrates, and possibly other key metabolites, can have ‘con-

served’ concentrations in the time scales of metabolic flux dynamics. In other words, these metabolites form

‘conserved moieties’ within the system, similar to enzymes, such that altering of the total pool size of these co-

substrates or the ratio of their different forms (e.g. the NAD+/NADH ratio) can possibly affect the flux distribution

across different pathways that they are connected to [62, 63, 58, 64, 61, 65].

where νi are the so-called stoichiometric coefficients, determining the number of molecules of the i’th

chemical species taking part in the reaction (Box 3.D). While these reactions are catalyzed by enzymes,

they still need to obey thermodynamic laws. We will not provide a full treatise of the thermodynamics of

chemical reactions here -we refer the reader to excellent books onphysical chemistry for this (e.g. [66]) and

also to books for a conceptual introduction to thermodynamics (e.g. [67]). Here, it suffices for us to define

the key thermodynamic equation, the Gibbs free energy of reaction, involving the chemical potential of

substrates and products. Chemical potentials are related to concentrations, where the relation depends

on the ionic strength of the solution. Assuming an ideal solution, we will write here the Gibbs free energy

of reaction directly in terms of concentrations:

∆Gr = ∆G◦
r +R · T · ln c

νc · dνd

aνa · bνb︸ ︷︷ ︸
Γ

, (3.2)

where the small letters indicate the concentrations of the substrates and products as given in the above

reaction. Notice that specifying ‘products’ and ‘substrates’ automatically specifies a ‘forward’ direction

to the reaction (Box 3.D). In the above expression, the term in the natural logarithm is the ratio of the

concentration of the products to the concentration of the substrates (considering the forward direction

of the reaction) and is commonly denoted as the mass action ratio, Γ. The term ∆G◦
r is the difference
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between the standard Gibbs free energy of formation of products and substrates.

The Gibbs free energy of a reaction is the key thermodynamic equation we introduce here, as it is this

equation that determines whether a reaction would run in the forward direction or not. If the Gibbs free

energy of reaction, for a given set of substrates and products concentration, is negative (∆Gr < 0), the
reaction will be spontaneous in the forward direction as it is written (i.e. in the way the ‘substrates’ and

‘products’ are defined). In other words, chemical reactions proceed in the direction of lower energy - they

minimize the internal energy of the system. We will see later (in section 3.2.3) that Gibbs free energy will

also feature in rate equations for biochemical reactions.

It is important to introduce here the concept of thermodynamic equilibrium, which is attainedwhen∆Gr =
0. Re-arranging equation 3.2 under this condition, we can obtain:

∆G◦
r = −R · T · ln

cνc
eq · dνd

eq

aνa
eq · bνb

eq
, (3.3)

where the subscript “eq” denotes the concentrations of each species at the thermodynamic equilibrium.

The ensuing ratio is known as the equilibrium constant,Keq = c
νc
eq ·dνd

eq
a

νa
eq ·bνb

eq
. Re-arranging equation 3.3, we can

derive an expression forKeq as follows:

Keq = e
−∆G◦

r
R·T (3.4)

Notice thatKeq depends only on ∆G◦
r , which is the difference between the standard Gibbs free energy of

formation of products and substrates involved in a reaction, and which can be calculated from tabulated

values (where available). A good source of Keq values of many biochemical reactions is the eQuilibrator

tool (equilibrator.weizmann.ac.il) [68, 69].

This thermodynamic treatment, showing that the equilibrium state of a reaction is captured by a constant

relating to the ratios of product and substrate concentrations at that state, is fully supported by seminal

experimental works from the second half of 1800s conducted on chemical reactions by Peter Waage (1833

- 1900) and Cato Guldberg (1836 - 1902), and their contemporaries. These works were concerned with the

equilibrium, or steady-state, of chemical reactions attained under different conditions and when initiated

from various starting concentrations of substrates. The key contribution of these studies was the finding

that the equilibrium state in a reaction, that is the ratio of the concentration of substrates and products at

steady-state, is characterized by a constant [70].

This finding, referred to as the “mass action law”, later gave rise to the notion (rather erroneously) that

reaction rate of a chemical reaction at constant temperature is ‘proportional to the product of the con-

centrations of the reacting substances’ [71]. This derived statement actually is not a law but presents a

possible ratemodel that would be compatible with the experimentally observed equilibrium state (i.e. with

the mass action law of equilibrium) [70, 71] (see Box 3.D and the Appendix A.2).

3.2.2 Enzymes - a brief note

We mentioned many biochemical reactions to be catalyzed by enzymes. It is therefore worth briefly ex-

plaining enzymes. Enzymes are proteins, chains of amino acids, that fold in the cell in various 3D struc-

tures. For our purposes, we do not need to understand all the intricacies of how enzymes are made or

how they fold into their structures (the reader is directed to excellent books on these subjects [72, 73]).

Suffice to say that in their folded-state, enzymes can bind a set of targetmetabolites in such away that puts

these metabolites in a specific physio-chemical environment and physical orientation, where their specific

biochemical reaction is facilitated. Thus, enzymes are catalysts that facilitate a chemical reaction among

metabolites. As we will discuss further below, modeling of biochemical reactions catalyzed by enzymes

requires developing a ‘mechanistic’ picture of how enzymes function. Such models can be developed

based on numerous studies on enzyme structure and function. Here, we will only state that a generally

acceptedmodel involves enzymes binding their substrates - thereby forming a enzyme-substrate complex

- and then transitioning to a state enabling catalysis. We can expand this model by also considering so-

https://equilibrator.weizmann.ac.il
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Physics box 3.D Mass action law for chemical reactions

νa A + νb B︸ ︷︷ ︸
substrates

k+−−⇀↽−−
k−

νc C + νd D︸ ︷︷ ︸
products

ξ∗

∆G < 0 ∆G = 0 ∆G > 0

ξ (Reaction adv.)
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a
l
e
n
e
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Thermodynamic interpretation

Gibbs free energy of reaction:

∆Gr = ∆G◦
r + R · T · ln

cνc · dνd

aνa · bνb

At equilibrium:

∆G◦
r = −R · T · ln

cνc
eq · d

νd
eq

aνa
eq · b

νb
eq

e
−∆G◦

r
R·T =

cνc
eq · d

νd
eq

aµa
eq · b

νb
eq

= Keq

Kinetic interpretation

Backward reaction rate:

k− · cνc · dνd

Forward reaction rate:

k+ · aνa · bνb

At equilibrium:

k+ · aνa
eq · b

νb
eq = k− · cνc

eq · d
νd
eq

k+

k−
=

cνc
eq · d

νd
eq

aµa
eq · b

νb
eq

= Keq

Cartoon representation of Gibbs free energy of reaction and the thermodynamic equilibrium – As a chemical

reaction proceeds, the concentrations of substrates and products change, which in turn affects the ‘energy in

the chemical system’. We can, thus, capture the reaction advancement in a graph, where the x-axis represents

the reaction advancement (i.e. the concentrations of substrates and products at different times in the reaction

course) and the y-axis the internal energy of the system. The Gibbs free energy of reaction, in a way, indicates the

position of the system in this graphical representation, where the thermodynamic equilibriumwould be the energy

minima. At equilibrium, reaction Gibbs free energy would be zero, allowing us to derive the relation between

substrate and product concentrations at that point and their free energy of formation. This relation is known as

the equilibrium constant of the reaction. The same relation can be derived using a rate model to describe the

forward and backward reactions that make up the overall reaction. The thermodynamic result (or derivation)

shows that a given reaction (under a given temperature) would always have the same substrate and product

concentrations at equilibrium, a point that is empirically verified by experiments and that is known as the “mass

action law”. The rate-based interpretation of this thermodynamic result (or law) is known as the “mass action rate

model” and assumes that rate of a given reaction is proportional to the concentrations of substrates and products

to the power of their stoichiometry, and adjusted by a rate constant (shown as k+ and k− above).

called allosteric binding sites, where specific molecules (including sometimes the enzyme’s own substrate

or product) can bind and alter the kinetics of either enzyme-substrate binding or catalytic activity. These

allosteric sites, thus, provide a mechanism for regulation of enzymatic reactions (Fig. 3.5).

3.2.3 Modeling reaction fluxes - reaction rate models

Metabolic reactions can involve diverse biophysicalmechanisms (uncatalyzed, enzyme-catalyzed, etc.) and

can take place under diverse biophysical conditions inside a cell (membrane-bound, cytosolic, extracellu-

lar, coupled across membranes, etc.). As such, mechanistically complete, biophysical representation of all
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(A) (B)

substrate([S]) flux≈εtot·kcat−−−−−−−−−→
enzyme (εtot)

product([P ])

enzyme

substrate 
binding site

allosteric site

enzyme
S
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S

S, P, I

kcat

altered kcat

Figure 3.5: Enzymes and flux regulation – (A) Schematic representation of a biochemical reaction, highlight-
ing the involvement of a catalyzing enzyme. For such enzyme-catalyzed reactions, the flux has an upper
limit relating to total enzyme concentration and kinetic parameters of the enzyme (see section 3.2.3 and
Appendix A.3 for enzyme catalyzed reaction rate models). (B) Cartoon representation of enzyme structure
and possible mechanisms of allosteric or competitive regulation. Such regulation can emerge either by
the substrate of the enzyme or other metabolites binding the enzyme and altering its overall reaction rate
(either through competition with the substrate or by altering the enzyme structure and affecting its kinetic
parameters).

metabolic reactions in dynamic, mathematical models might never be possible [74]. Dynamical models

of metabolic systems, as with all mathematical models, must therefore balance abstraction of real mech-

anistic features of a system with achieving a still useful and insight-providing model. At the core of all

dynamical metabolic models are rate equations that aim to capture the kinetics of biochemical reactions.

Non-enzymatic reactions - the reversible and irreversible mass action rate models All rate models

used in metabolic modeling are based on the so-called ‘mass action law’ described in Box 3.D above. As

discussed in that section, the “mass action law”, which is derived from thermodynamic principles, is com-

patible with a rate model that assumes reaction rate of a chemical reaction at constant temperature to be

‘proportional to the product of the concentrations of the reacting substances’ [71, 70] (see Box 3.D). This

‘mass action ratemodel’ is commonly used, especially in the context of elementary reactions (i.e. reactions

involving one single step), and has been shown empirically to apply in the case of some non-elementary re-

actions [70]. According to the mass action model, the net rate of any reaction of the form given in Eq. (3.1)

is given by;

v = k+ · aνa · bνb − k− · cνc · dνd , (3.5)

where small letters denote concentration of the relevant species of the same letter, νi denote the stoichio-

metric coefficient for species i (as introduced above), and k+ and k− denote kinetic rate constants relating

substrate concentrations to reaction rate.

Themass action rate expression is such that if the first term is larger than the second then v > 0, andmore

reactant will convert to product than product converting to reactant (Box 3.D). This situation will continue

until some point, where the second term will be larger than the first, and the opposite will occur. Conse-

quently, this expressionmakes the system converge towards an equilibrium point, or steady-state, where

v = 0. As long as the reagents are free to move, they will collide and interconvert (in both directions) at the

microscopic level, even when the equilibrium is reached. However, at equilibrium, the amount of reactant

converting to product equals the amount of product converting to reactant per unit of time, therefore

there is no net consumption and production of metabolites (Box 3.D). When we have the concentrations



Reaction thermodynamics and enzyme kinetics 45

that lead to the thermodynamic equilibrium of the reaction, i.e. equilibrium concentrations, we will have;

v = 0 = k+ · aνa · bνb − k− · cνc · dνd

k+

k−
= cνc · dνd

aνa · bνb

This ratio is known as the reaction’s equilibrium constant Keq and hence the ‘mass action rate model’ is

consistent with the empirical observations of Waage and Guldberg. As we have shown in Eq. (3.4) above,

the equilibrium constant is equivalent to the reaction’s Gibbs free energy under standard conditions. Note

that when considering a biochemical system (rather than a chemical one), it is customary to report Gibbs

free energies for standard conditions adjusted for a pH of 7, and denoted with superscript ◦′. Thus, we

can write;
k+

k−
= Keq = e− ∆G′◦

R·T (3.6)

where ∆G′◦ is the Gibbs free energy under biological standard conditions, and R and T denote the molar

gas constant1 and temperature (in Kelvin) respectively (see Box 3.D). It is important to note here that,

given Keq is a constant determined by thermodynamics, the parameters k+ and k− cannot be chosen

independently, i..e k− = Keq/k+.

Following on from this last point, it is important to consider a reaction with large Keq, i.e. a reaction for

which ∆G′◦ is highly negative. In this case, the value of k− can become small to the extent that the reverse

reaction can be negligible. In this case the reaction could be considered as effectively irreversible and the

rate model can be approximated by;

v = k+ · aνa · bνb (3.7)

Enzymatic reactions The mass action rate discussed above forms also the basis of modeling enzymatic

reactions. This approach is justified by considering each enzymatic reaction as a series of ‘elementary

steps’, each obeying the mass action rate model. To this end, many alternative elementary steps, or ‘en-

zyme mechanisms’, can be considered to ‘capture’ an enzymatic reaction and subsequently many alter-

native assumptions can be made to simplify the resulting system of steps. It is also possible to include

allosteric regulation or other types of inhibition or activation steps within these elementary steps, allow-

ing generation of a rich variety of enzymatic models and rate equations. Here, we will cover some of the

most common of such models, noticing that the construction of these models follows the same general

principles of (i) drawing up elementary reactions, (ii) writing down mass action based kinetic rates for the

system, and (iii) simplifying the system with assumptions on kinetic parameters (see Appendix A.2). The

reader can consult additional books (e.g. [75]) for more specific, elaborate enzymatic reaction schemes,

or can attempt them as a exercise.

Single substrate, irreversible enzymatic ratemodel (Michaelis-Mentenmodel)Apossible representation

of an enzyme mediated reaction consisting in the conversion of a reactant S to a product P could be the

following reaction scheme:

S + E
k1−−⇀↽−−k2

ES kcat−−→ P + E.

This reaction scheme is rather specific, for example, it ignores the possibility that substrate bound enzyme

can be converted into product, while remaining bound on the enzyme. Thus, the above reaction scheme

is derived from a more complete and more complex reaction scheme through application of several as-

sumptions relating to individual reactions. The resulting rate model from the above scheme is usually

known as the Michaelis-Menten model, named after the biochemists Leonor Michaelis and Maud Menten

who studied enzyme kinetics in the early 1900’s, but several studies of that time and afterwards arrived

at a similar model using different assumptions. Implementation of the specific assumptions, as we de-

tailed in Appendix A.3, allows one to arrive at the above reaction system, which can be represented by a

1The molar gas constant (also known simply as the gas constant) is the molar equivalent to the Boltzmann constant,
expressed in units of energy per temperature increment per amount of substance (quantified in moles rather than
single particles). Its value is about 8.31 J · K−1 · mol−1.
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Figure 3.6: Michaelis-Menten rate law – The x- and y-axis show the substrate concentration (normalized by
KM) and reaction flux (normalized by vmax) respectively. The dashed horizontal line corresponds to vmax,
i.e. εtot · kcat.

reduced ODE system, compared to the full system. In this reduced ODE system, the ODE describing the

rate of formation of the product, which is equivalent to reaction rate, becomes:

v = s · εtot · kcat

KM + s
(3.8)

where εtot represents the total enzyme concentration, kcat is known as the catalytic rate of an enzyme,

and KM is known as the Michaelis-Menten coefficient of the enzyme and is equal to (k2 + kcat)/k1 (we

note that depending on the assumptions used, the expression for KM can vary). Plotting the above rate

of formation of product against increasing substrate concentration (see Figure 3.6) shows that the rate is

a ‘saturating function’ of substrate, i.e. the rate approaches a threshold point - given by vmax = εtot ·kcat as

substrate concentration increases. Thus, we can see that the enzymatic nature of the reaction introduces

a limiting factor on the reaction rate that depends on vmax, i.e. total enzyme concentration and enzyme’s

catalytic rate. This fact underpins the regulation of metabolic flux through regulation of enzyme levels or

enzyme’s catalytic rate, and is a key conceptual point for the constraint-based methods discussed later in

this book.

Single substrate, reversible enzymatic rate model (Haldane model) Considering that all chemical reac-

tions are — at least, in theory — reversible, it is also possible to express the rate of an enzyme-mediated

reaction as a function of the concentration of both substrate and product. A method to do so has been

introduced by Haldane [76]. It considers the following reaction scheme:

S + E
k1−−⇀↽−−k2

ES
k3−−⇀↽−−k4

EP
k5−−⇀↽−−k6

P + E.

Deriving the rate equation for this reaction scheme is slightly more involved, but it follows the same strat-

egy as explained above, of creating elementary steps, treating them as obeying mass action rate, and

making additional simplifying assumptions. As shown in Appendix A.2, we can follow this strategy to de-

rive the reversible rate equation as follows:

v = εtot · k
+
cat
KS

·
s− p · k

−
cat/KP

k+
cat/KS

1 + p

KP
+ s

KS

(3.9)

where KS and KP are composite constants relating to the substrate and product binding to the enzyme,

and k+
cat and k

−
cat are Haldane coefficients (again, composite parameters of other kinetic constants) de-
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scribing catalytic rate of the enzyme (see Appendix A.2 for further details of these parameters).

As done in the above section on kinetics of the non-enzymatic reversible reaction, we can consider the

equilibrium condition for this enzymatic reversible reaction. This would allow us to derive the correspond-

ing relation between Keq and reaction Gibbs free energy. Recognizing the relation between the Haldane

composite parameters and Keq (see Appendix A.2) and the flux-force relation (see below), we can then

re-formulate the reversible rate equation as:

v = εtot · k+
cat · s/KS

1 + p/KP + s/KS
·
(

1 − e
∆G′

r
R·T

)
(3.10)

where ∆G′
r is the Gibbs free energy of reaction for a given substrate and product levels under biological

conditions and considering the forward direction of the reaction. This rate equation shows that forward

reaction rate will be independent of thermodynamics, when the reaction free energy is highly negative

(i.e. when the reaction is far from thermodynamic equilibrium, ∆G′
r � 0). However, as the reaction Gibbs

free energy gets close to zero, the reaction rate will decrease, and as such, there will be a dependency of

reaction rate to reaction free energy.

Another way of writing equation 3.10 is this one:

v = εtot · k+
cat ·

s/KS ·
(

1 − e
∆G′

r
R·T

)
1 + s/KS ·

(
1 + k+

cat

k−
cat

· e
∆G′

r
R·T

) (3.11)

where we replace p/KP with an expression that depends on s and ∆G′
r. This alternative expression, de-

veloped in the context of modeling microbial metabolism [77, 78], can be useful because it shows us that

when the reaction is far from equilibrium (∆G′
r � 0), the term e∆G′

r/(R·T ) will approach zero and the

above formula can be approximated by the irreversible Michaelis-Menten rate law (Equation 3.8). In this

case, we further notice that the Haldane coefficient Ks becomes equivalent to KM introduced above in

the irreversible reaction scheme (see section 3.2.3).

It is important to note that many reactions within cell metabolism are experimentally shown to be re-

versible, indicating that they operate close to thermodynamic equilibrium [17, 79, 68].

Ratemodels for representing allosteric effects Ratemodels for representing allosteric effects, i.e. binding

of additional molecules - or their own substrates - on the enzyme and affecting the enzyme-mediated

reaction rate, can be created either by adjusting the rate laws given above empirically, or by considering

the additional binding events at ‘allosteric sites’ of the enzyme and deriving a new ‘mechanistic’ ratemodel.

To give an example of the former strategy, we can consider a Michaelis-Menten rate model adjusted for

an inhibitory effect of the substrate on the enzymatic reaction rate. This adjusted rate model can be

expressed as:

v = vmax · s
KM + s+ s2/KI

(3.12)

whereKI represents the saturation coefficient for the binding of the substrate at an allosteric site on the

enzyme. Notice that we used such a model in the small multi-stable system example introduced above

(section 3.3.3) and discussed in Appendix A.3.

For the same example, the alternative approach (the latter case mentioned above) would be to develop a

mechanistic model involving multiple binding reaction on an enzyme. The resulting elementary reactions

and their mass action implementation can be then carried out. This process would result in a set of ODEs,

which can then be further simplified to draw a rate model for the proposed allosteric regulation. An ex-

ample of this type model is developed in the context of multi-substrate binding enzymes, and shown to

lead to multi-stability under certain parameter conditions [80].

Flux-force relationshipAll chemical reactions, including biochemical reactions,must obey thermodynamic
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Figure 3.7: The ratio of net forward flux (J) to forward reaction rate (v+) as a function of the negative
reaction Gibbs free energy

laws. This fact manifests itself in several ways in dynamical modeling. Firstly, reaction direction (or, rather,

feasibility) is determined by the sign of the reaction Gibbs free energy. Second, the kinetic constants

associated with the elemental reaction steps are constrained by thermodynamics (section 3.2.3). To see

the third relation arising from thermodynamics, we consider again the simple non-enzymatic mass action

model we used above – reaction schematic given in Eq. (3.1) and the reaction Gibbs free energy given by

Eq. (3.2).

We now re-consider the net rate of reaction as given above in Eq. (3.5), and break this into its components

of forward reaction rate (or flux) and reverse reaction rate (or flux), which are given by;

v+ = k+ · aνa · bνb

v− = k− · cνc · dνd

and then, we can express the net forward flux (J) as:

J = v+ − v− = v+ ·
(

1 − v−

v+

)
= v+ ·

(
1 − k− · cνc · dνd

k+ · aνa · bνb

)
= v+ ·

(
1 − k−

k+
· Γ
)

In this re-organized form of the net forward flux, we notice that the expression in parentheses on the right

hand side can be re-expressed in terms of reaction free energy (using Eq. (3.6)) as follows:

J = v+ ·
(

1 − k−

k+
· Γ
)

= v+ ·
(

1 − Γ
Keq

)
= v+ ·

(
1 − e

∆G′
r

R·T

)
Thus, we find that the net forward flux of the reaction is given by the forward reaction rate multiplied

by a thermodynamic factor. When the reaction is energetically favored, i.e. has large negative Gibbs free

energy, the thermodynamic factor diminishes and the net forward flux is fully determined by forward

reaction rate alone (see Figure 3.7). When the reaction is closer to equilibrium, i.e. small negative or near-

zero Gibbs free energy, then the net forward flux will be determined by a combination of forward and

reverse flux rates. This relation between net forward flux and thermodynamics is referred to as the flux-

force relation [81, 82] and holds also for the enzymatic reversible reaction model described above (see

section 3.2.3).

A note on choosing a reaction rate model In the above sections, we have introduced several biochemical

reaction rate models. Thesemodels fall into twomain categories, namely those that model enzyme action

(i.e. enzymatic models) and those that ignore the enzyme action (i.e. non-enzymatic models). Notice that
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derivation of both categories of models rely on the mass action law. In the non-enzymatic case, we model

reactions as single-step forward and backward reactions using mass action, while in the enzymatic case,

we consider multi-step reaction mechanisms, but still use the mass action for each individual step. For

each category, we can consider the reaction thermodynamics and model reactions as reversible, but –

as we discussed above – we can also choose to approximate reactions as ‘irreversible’ when the overall

reaction’s Gibbs free energy is very negative (i.e. whenKeq is large).

In a given modeling context and metabolic system, it would be a valid question to ask – which model

should one use? This question can be answered in parts. In the first instance, we can make a decision

about the use of reversible or irreversible rate models. As already mentioned, this decision should be

based on the value of Keq – a reaction with a very large Keq can be modeled as irreversible, as long as

the product concentrations are known not to reach very high levels (in a cell). However, to represent

a metabolic reaction as irreversible is not without consequences even if the reaction always runs in the

same direction (notice that the assumption of irreversible reaction means that the reaction rate cannot

go negative). Reversible kinetics can capture the negative feedback of reaction products on reaction rate,

and irreversible reaction models would lose this feature [83]. A recent study by Shen et al [84] showed

how important it can be to include product inhibition to create a predictive metabolic model.

In the case of lower Keq value – in combination with a consideration of possible product concentration

– the modeler should opt for the reversible rate models, which are thermodynamically consistent. The

decision about use of enzymatic or non-enzymatic reaction models can be made in a practical manner. If

the enzyme associated with the modeled reaction has measured kinetic rates, it would be sensible to opt

for a enzymatic model (noting that in vivo enzyme kinetics might differ from those measured in vitro and

that many enzyme kinetics studies use parameter derivations assuming an irreversible Michaelis-Menten

model). Consequently, it may not be possible to find all the required parameters in the literature, so

to model a reaction using reversible rate model. In the absence of measured enzyme parameters, the

modeler can use ‘guesstimated’ parameters, based – for example – on the distribution of known enzyme

kinetic parameters, or alternatively, use the non-enzymatic model.

Given the discussion in the preceding paragraph, it is a useful exercise to considerwhen the non-enzymatic

and enzymaticmodelsmight behave in the sameway. We have introduced above the concept of flux-force

relationship, where we have shown that the net flux in a reversible reaction would be given by the forward

flux multiplied by a thermodynamic factor:

J = v+ ·
(

1 − Γ
Keq

)
If we consider this equation for the reversible non-enzymatic and enzymatic models, we would notice that

the thermodynamic factor would show the same behavior for both models, depending only on reaction

Keq value and substrate and product concentrations. Where the models would differ, would be in the

behavior of the v+ term, which takes the form:

For the reversible enzymatic case:

v+ = εtot · k+
cat · (s/KS)/(1 + s/KS + p/KP)

And, for the reversible non-enzymatic case:

v+ = s · k+

Where kcat,KS, andKP are the enzyme kinetic parameters for the enzymatic model and k+ is the forward

reaction rate coefficient for the non-enzymaticmodel. Thus, the twomodelswould behave in a similar way,

when there is correspondence between these two terms, which are sometimes referred to as “saturation

terms” [82]. By re-arranging the above terms, we can show that correspondence between the two models
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can be expressed as:

εtot · k+
cat · (1/KS)/(1 + s/KS + p/KP) ≈ k+

We can see that in the regime, where s � KS and p � KP, both models would behave in a linear fashion

and their behavior would correspond exactly with the right choice of parameters (i.e. assuming (εtot ·
k+

cat/KS) = k+). Outside of this regime, correspondence would be dependent on both parameters and

concentration of S and P . One interesting case to consider is when total amount of S and P would be

conserved, for example, with cycling reaction schemes. In this case, we can introduce a new parameter

C to describe the total pool of the cycled metabolite (e.g. C = S + P ) and the correspondence would be

expressed as:

(εtot · k+
cat/KS)/(1 + (s ·KS − s ·KP)/(KS ·KP) + C/KP) ≈ k+

Thus, in this case of the sum of substrate and product concentrations being conserved, we can have cor-

respondence between the non-enzymatic and enzymatic models when S is small or whenKS = KP.

3.3 Dynamics and regulation of metabolism

As explained so far in this chapter, cell metabolism involves biochemical reactions involving metabolites

(and often catalyzed by enzymes). Thus, understandingmetabolism involves studying the dynamics of this

system, trying to predict how metabolite levels will go up or down, or settle to a steady state as cell physi-

ology changes in response to external or internal processes (e.g. cells encountering glucose or undergoing

division). Obtaining such understanding requires us to develop models of biochemical reaction systems

and predict the ‘dynamics’ of those systems. In the previous section, we learned how to model one bio-

chemical reaction. Now we will see how we can readily expand these models to capture multi-reaction

systems. The ‘art’ of developing and analyzing dynamical models falls under the branch of mathematics

known as calculus and nonlinear dynamics. Many introductory books to these subjects are available, but

we find that two particularly useful ones are those by Silvanus Thompson on calculus [85] and by Steven

Strogatz on nonlinear dynamics [86]. Here, wewill not re-introduce these topics but focus solely on various

reaction rate models for metabolic systems that have been developed based on ODEs. We will highlight

relations between these models and reaction thermodynamics and explore their possible limitations and

applications in different cases. There are also books that are solely dedicated to models of biochemical

reaction kinetics and enzyme kineticsmore broadly - the reader is advised to further explore the topic with

the help of such books, particularly [72, 75, 87]

3.3.1 Stoichiometric matrix and ordinary differential equations

Asmentioned above, metabolic systems consists ofmany reactions. When describingmultiple reactions in

a biochemical ‘system’, it is convenient to represent the stoichiometries of individual reactions in a compact

form called the stoichiometric matrix, N. The rows and columns of this matrix corresponds to m species

(i.e. the metabolites), and to n reactions, found in the system respectively:

N is am× n matrix

The intersection of a row and column in the matrix indicates whether the species represented by that

row takes part in the particular reaction represented by that column, or not. The sign of the element

determines whether there is a net loss or gain of substance, and the magnitude describes the relative

quantity of substance taking part in the reaction. It is important to appreciate that the elements of the

stoichiometry matrix do not concern themselves with the rate of reaction, and just indicate the quantities

taking part in the reaction.

A full description of a biochemical network, including the time-varying, dynamical behavior of metabolite

concentrations, will augment the stoichiometry matrix with a rate vector, v, forming a so-called system
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Figure 3.8: Illustration of thermodynamic equilibrium and dynamical steady state – (A) Thermodynamic
steady state. (B) Dynamic steady states – non-equilibrium thermodynamics. While the former happens
only at chemical equilibrium, the latter can arise in systems that are far from chemical equilibrium. A car-
toon of a flowingwater through a tank and a reaction involving co-substrate cycling are shown as examples
of systems that can attain dynamical steady states.

equation:
ds
dt = N v(s) (3.13)

This equation represents a system of ordinary differential equations (ODEs) that describe the time evolu-

tion of the species, s. In other words, the ODE for species s describes the rate of change in the concentra-

tion of s with a given (infinitesimal) change in time. The ODEs can be solved numerically (i.e. simulated) by

computer or studied analytically.

Notice that in mathematics, the time varying entities in a dynamical systems - in our context, the concen-

trations of chemical species - are known as ‘variables’, while any elements of the system that stay constant

over time are known as ‘parameters’. For an insightful and accessible mathematical treatment of differ-

ential equations and system dynamics, the reader is referred to these two excellent books [85, 86], while

for a metabolic view of variables and parameters, the article on the Control of Flux, by Kacser and Burns,

offers a valuable perspective [88].

3.3.2 Dynamic steady state

As stated above, the ODEs describe the time evolution of all variables s in the system. An informative

approach to any dynamical system is to consider its steady state, a state where consuming and generating

processes on each variable would have the same rate, i.e. the ODEs are equal to zero, and there would be

no change in the variable amounts. For example, a water tank filling at a constant rate but emptying at a

rate proportional to the height of water in the tank will eventually reach a steady-state where the output

flow equals the inflow of water (Fig. 3.8). Under these conditions the height of water remains constant, or

at a steady state.

It is important to note that the thermodynamic equilibriummentioned above is also a type of steady-state,

but this does not mean that steady-state is only attained at thermodynamic equilibrium. In other words,



52 Cell metabolism

x
v1 v2

Figure 3.9: Cartoon of a simple pathway that features allosteric enzyme regulation and that can show
multiple steady-state solutions (see Appendix A.2). The metabolite ‘x’ positively regulates the first step, v1.
The resulting positive feedback can result in a bistable system under a certain parameter regime.

there can be a steady-state where the system is out of thermodynamic equilibrium but the concentrations

of metabolites are not changing. An example of this would be a linear metabolic pathway of connected re-

actions, with influx and outflux of an initial and endpoint metabolite (as seen in Fig. 3.8). In such a system,

we can readily consider a scenario where there is influx of the first metabolite, outflux of the last metabo-

lite, and forward flux through each of the reactions in the pathway. Thus, we would have a situation where

all reactions are out of thermodynamic equilibrium, but all metabolite concentrations in the pathway at-

tain a dynamic steady-state, where their influx and outflux are equal (Fig. 3.8). The distinction between

systems that are both at steady-state and thermodynamic equilibrium, and those that are at steady-state

but out of thermodynamic equilibrium, is an important one. It has been shown that complex dynamics,

such as bistability and oscillations (as discussed below) are only possible in the latter case [89, 81, 90].

Mathematically speaking, the steady-state is defined when the ODE system, i.e. the system equation, is set

to zero:
ds
dt = N v(s) = 0 (3.14)

For simple systems, such as a tank of water filling and emptying, there is only one unique steady-state.

This is perhaps better illustrated with a simple biochemical example. Consider a two step pathway where

the first step has a constant rate k1 and the second step a variable rate determined by a first-order reaction

rate, k2.
v0 = k1−−−−−→ S v1 = k2·s−−−−−−→ (3.15)

The differential equation describing this system is given by:

ds
dt = k1 − k2 · s (3.16)

Setting this equation to zero and solving for s yields the steady-state level of S:

s = k1

k2
(3.17)

This solution indicates there is only a single steady-state for this system dependent on the parameters k1

and k2.

3.3.3 Multiple steady-states and oscillations

In the previous section it was shown that a simple two step pathway admitted a single steady-state. There

can be, however, metabolic systems that can show multiple steady states. As a simple example, consider

the system shown in Figure 3.9. This shows a linear pathway of two reactions, with the first reaction

activated by the species x.

Under certain parameter and model choices, such a system can admit three steady-states. Details of a

model that can be simulated can be found in Appendix A.3). Other examples of metabolic systems with

multiple steady-states will be given below. In bi-, or multi-stable systems, there can be multiple sets of

steady state concentrations and flux rates that the system can settle at. Which set of steady-states is

realized is usually determined by initial concentrations or can be caused by a change in one of the concen-

trations or parameters. Thus, the system can change its steady-state value abruptly at a threshold value

of a specific parameter of the system. For a metabolic system displaying bistability, we can expect a rapid

switch in multiple fluxes with changes in the concentration of one or few metabolites [86]. Furthermore,

when bistability is combined with noise in some parameters (e.g. enzyme expression level) there can be a
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multi-modal distribution of flux states across genetically identical cells (e.g. see [91, 92] and section A.1).

3.4 Concluding remarks

In this chapter, we set out to introduce cellular metabolism as a dynamical system. We have seen that

metabolism comprises many biochemical reactions, that are historically cataloged and described into

pathways. These pathways are usually not linear, composing of serial conversions of metabolites, but

rather display branching points and inter-connections through metabolites participating in many reac-

tions. This inter-connected nature of metabolic systems, together with the large numbers of participating

metabolites and reactions, makes them a complex system to study and conceptualize.

We have introduced both simplified, coarse-grained viewpoints for describing metabolism, and mecha-

nistic approaches for detailed dynamical modeling of it at the level of single reactions. The former can be

used to guide specific ideas on how to studymetabolism, or to develop analogies to other disciplines, while

the latter can provide a toolbox for constructing dynamical models of small or large metabolic systems.

We have provided specific examples of such dynamical models and shown how they can allow us to relate

system behavior - steady state or temporal behavior - to specific reaction mechanisms or parameters (e.g.

allosteric interactions between metabolites and enzymes, cyclic reaction schemes, branching points).

There are many challenges remaining in the analysis and understanding of metabolism as a dynamical

system. Recent studies found for example that many fluxes, where measured, are lower than predicted

froma enzymatic irreversible reaction ratemodel (introduced in Eq. (3.8)) [24], and changes in flux patterns

with changing conditions cannot be explained by enzyme levels alone [93]. These findings lead to the ques-

tion on what determines/limits reaction fluxes and how reaction fluxes are regulated besides regulation

of enzyme levels. There are several possible answers, including effects relating to allosteric interactions

between metabolites and enzymes, reaction thermodynamics, and substrate-related effects. The experi-

mental study and model incorporation of these possibilities is ongoing in systems biology, with increasing

interest to include also more of the physico-chemical aspects of the cellular environment into the study

of metabolism - such as diffusion of molecules, involvement of radical chemistry (especially generation of

oxygen radicals in respiration) and membrane potential [94, 74]. As such, we are increasingly hoping to

move from metabolic reactions studied in isolation, to cell-scale models and physico-chemical concepts

that unite cell metabolism and physiology. Some of this emerging movement is captured in subsequent

chapters of this book.

Recommended readings

Enzyme kinetics and reaction models

◦ “Enzymes” by J. B. S. Haldane [76]. Historically important book on enzyme kinetics and enzymatic reac-

tion models.

◦ “Fundamentals of Enzyme Kinetics” by A. Cornish-Bowden [75]. General introductory book on enzymes

and enzyme catalysis.

◦ “Enzyme Kinetics for Systems Biology” (2012) by H.M Sauro [87]. In addition to covering enzyme kinetics,

this book also discusses stochastic kinetics and the kinetics of gene regulatory systemswith an emphasis

on systems biology models.

◦ “Structure and Mechanism in Protein Science: Guide to Enzyme Catalysis and Protein Folding” by A.

Fersht [72]. General introductory book on enzymes and enzyme catalysis.

Thermodynamics and physical chemistry

◦ “Understanding thermodynamics” by H. C. van Ness [67]. An excellent book that de-mystifies thermo-

dynamics. It provides a conceptual treatise, leaving the mathematics to the side and focusing on what

actually the thermodynamic laws mean.

◦ “Principles and Problems in Physical Chemistry for Biochemists” by N. C. Price [66]. An introductory book
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on thermodynamics, physical chemistry, and biochemistry.

Metabolic system dynamics

◦ “Energy metabolism of the cell : a theoretical treatise” by J. G. Reich and E. E. Sel’kov [61]. Provides an

early view of the importance of reaction dynamics as a ’self-regulatory’ element in metabolism. Empha-

sizes the importance of cyclic reaction schemes and interconnections among metabolic processes.

◦ “Chemical Biophysics: Quantitative Analysis of Cellular Systems” by D. A. Beard and H. Qian [94]. Pro-

vides a rare approach of attempting to combine - co-study the more physical aspects of cell physiology,

including membrane potential and compartmentalization, with metabolism dynamics.

◦ “Systems Biology: An Introduction to Metabolic Control Analysis” (2018) by H. M Sauro [95]. Discusses

biochemical network dynamics from the perspective of metabolic control analysis.

Problems

Problem 3.1 An irreversible reaction with simultaneous binding

1. Write the reaction scheme for an irreversible enzymatic reaction with two substrates. Assume both

substrates bind the enzyme simultaneously (forming one complex ES1S2), and both products are

released simultaneously from this complex (i.e. without intermediary EP1P2 stage).

2. Find the rate of product production for this system.

Problem 3.2 A reversible reaction

1. Write the reaction scheme for a reversible enzymatic reaction with two substrates. Assume both

substrates bind the enzyme simultaneously (forming one complex ES1S2), and both products are

released/absorbed simultaneously from/into this complex (i.e. without intermediary EP1P2 stage).

2. Find the rate of product production for this system.

Problem 3.3 An irreversible reaction with sequential binding

1. Write the reaction scheme for an irreversible enzymatic reaction with two substrates. Assume the

substrates bind sequentially (forming complexes ES1 and ES1S2), and both products are released

simultaneously from ES1S2 (i.e. without intermediary EP1P2 stage).

2. Find the rate of product production for this system.

Problem 3.4 An irreversible reaction with random-order binding

1. Write the reaction scheme for an irreversible enzymatic reaction with two substrates. Assume the

substrates bind the enzyme in any order (forming complexesES1,ES2 andES1S2), and both products

are released simultaneously from this ES1S2 (i.e. without intermediary EP1P2 stage).

2. Find the rate of product production for this system. Note that symbolic math tools such as Mathe-

matica, Maple or the SymPy Python library will be helpful for this question (though not essential).



Chapter 4

Metabolic flux distributions

Daan de Groot, Felipe Scott, and David Tourigny

Chapter overview

◦ The metabolic capabilities of an organism can be related to the individual chemical reactions it can

catalyze

◦ Elementary flux modes are minimal metabolic strategies that together span all metabolic capabili-

ties.

◦ When the analysis of elementary flux modes is prohibited by computational limits, alternatives

could be used, such as elementary conversion modes, flux sampling and minimal cut sets.

4.1 Modeling metabolic fluxes in cells

In the previous chapters we have seen that cells can convert substances from their environment into

building blocks for cell components: their metabolism allows cells to grow, reproduce, repair themselves,

and produce compounds needed to resist environmental stresses. But how does a cell manage this in

detail, and does it have alternative metabolic strategies in case one does not function properly?

The overall metabolic conversion, for example fromnutrients and oxygen to all necessary cell components

and carbon dioxide, that a cell can use to grow and reproduce is in fact the consequence of many smaller

chemical reactions working in concert. All chemical reactions that a cell can catalyze by expressing its en-

zymes form a very versatile ‘metabolic network’, which enables a cell to survive and grow, even when the

availability of nutrients in its environment changes. There are various (semi-)automatized methods avail-

able that can be used to reconstruct this metabolic network from an organism’s genome sequence, see

Mendoza et al. for a review of the various methods [96]. In this chapter we will zoom in on this metabolic

network and study the fluxes (reaction rates) through all individual reactions.

We call the combination of all reaction rates in a cell a ‘metabolic flux distribution’, and this flux distribution

determines if and how a cell succeeds in taking up and converting the right nutrients to sustain itself. For

a growing cell, we may ask: what will its flux distribution be, and how does this distribution change when

its environment changes? Modeling metabolic fluxes allows us to answer specific questions, for instance

about the change of a cell’s metabolism after a gene is deleted: will it survive, and if so, will it take up

different nutrients or produce different products? In contrast to the previous chapters, in the current and

following chapters we are not satisfied with verbal descriptions, but seek predictive models that allow us

to compute the state of a cell.

So how can we model metabolism in detail? Our main task is to describe and predict the uptake, conver-

55
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sion, and production of metabolites, as described by the metabolic fluxes. The rate at which a chemical

reaction runs depends (through kinetics and thermodynamics) on metabolite concentrations and enzyme

activities. Since enzymes are synthesized by the cell itself, the reaction rates are not only controlled by

external nutrient supply, but also by gene expression. These dependencies make this a complicated field

of study: the metabolic fluxes depend on the enzyme levels and metabolite concentrations, while the

metabolite concentrations are again determined by the balance of fluxes through reactions that produce

and consume the metabolites. In turn, enzyme levels are determined by gene expression, which is de-

pendent on both external conditions and internal needs (e.g. the enzyme expression may change when

different macromolecules need to be made in different phases of the cell cycle). To make matters even

less transparent, most of the parameters (e.g. enzyme kinetic constants and details of enzyme regulation)

are unknown.

For the moment, we therefore make some simplifying assumptions in order to obtain tractable models:

1. Focus on small molecules We focus on a subsystem of the cell, the metabolism of small molecules,

which generates macromolecular precursors and energy carriers. All other processes (such as macro-

molecule synthesis) that happen “outside” our metabolic network are ignored.

2. Ignore spatial structureWe largely ignore the spatial structure of cells: metabolite concentrations and

reaction rates are assumed to be homogeneous across the cell. The exception to this rule occurs when

there are cell compartments, in which case we describe the metabolites in both compartments as if

they were separate compounds (e.g. cytosolic ATP vs mitochondrial ATP), which can be converted in

each other through transport “reactions”.

3. Focus on fluxes as the only variables Instead of considering metabolite concentrations, enzyme levels

andmetabolic fluxes together, we will only focus onmetabolic fluxes. This has important consequences

for the mathematical models that we will construct: many variables, and the corresponding equations,

will be ignored. Additionally, fluxes cannot be computed through enzyme kinetics, so that we need to

find other, non-mechanistic ways to compute the fluxes!

4. Focus on steady-state metabolism In a simplified picture of balanced growth (see the chapter on Bal-

anced Growth), all metabolic processes are balanced: the rate at which material flows into the cell

matches the rate at which it is converted, which again matches the production rate of macromolecule

precursors. In addition, we assume that these fluxes are constant, such that the whole metabolic net-

work is in a ‘steady-state’. Taken together, we thus assume that the metabolic network can take up and

produce external metabolites (e.g. extracellular metabolites and macromolecular precursors), but that

all internal metabolites (“inside” the metabolic network) are mass-balanced, that is, for each of these

metabolites, production and consumption cancel out.

5. Describe precursor demand by a “biomass reaction” We assume that cell growth (or: biomass pro-

duction) requires a fixed set of macromolecule precursors in fixed proportions, corresponding to the

average mixture of cell components that are necessary to make a cell. For metabolism, this means

that the production of more macromolecule precursors only leads to more biomass production when

the production of all precursors is scaled up proportionally. We formally express this by a hypothetical

“biomass reaction” that consumes a mix of precursors and energy carriers in the predefined propor-

tions. Hence, in the metabolic models we will describe the term “biomass” has a special meaning: while

it usually means “the totality of compounds in a cell”, here we use it for “the totality of compounds out-

side our metabolic model, which metabolism needs to produce”.

6. Ignore dilution of small moleculesWhen a cell doubles its size but does not produce a certain metabo-

lite, the concentration of this metabolite will halve. This basic principle is called ‘dilution by growth’,

and in principle affects all compounds in the cell. During balanced growth, the production of macro-
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molecules that are produced but not degraded should balance dilution, i.e. the number of each macro-

molecule should double when the cell doubles its size. This requires the rate of precursor supply to

match the dilution rate, and hence the cell’s growth rate. Similarly, small molecules are diluted, but

since these are also degraded by consuming reactions, the rate of dilution is usually negligible com-

pared to the production and consumption by metabolic reactions. Therefore, the models below will

usually ignore the dilution of such metabolites.

7. Constrain solutions bymodeling limited resources Since each enzyme has amaximal catalytic rate (the

kcat value), a reaction flux will require a certain (minimal) amount of enzyme, which takes up cellular

space; since cellular space is limited, fluxes cannot increase infinitely since there is always an upper

bound on a weighted sum of reaction fluxes. This constraint implies compromises between different

reaction fluxes: one flux can only be increased at the expense of others.

With these assumptions, we are converging on a mathematical model: we know which variables to de-

scribe (themetabolic fluxes in steady-statemetabolism), which constraints to apply (the balance of produc-

tion and consumption of all internalmetabolites) andwhatmain input informationwe need (themetabolic

network, described by a list of chemical reaction equations). Importantly, themodel will be able to describe

compromise: for example, with a given carbon influx and assuming mass balance, the carbon atoms can

either be used to generate energy or biomass; if one function increases, the other one goes down. To

obtain realistic predictions, we may introduce additional constraints, for example known flux directions

or experimentally measured uptake rates. All this information will not suffice to predict metabolic fluxes

precisely, but it allows us to narrow down the possible flux distributions. Importantly, all formulae in these

models are linear, which makes them tractable even for very large model sizes (with thousands or even

hundreds of thousands of variables).

Notably, all these assumptions depend only on the list of chemical reaction equations (the stoichiometry

of the metabolic network), and nothing needs to be known about enzyme kinetics. So if the networks

are already known, what do we gain from this kind of modeling? Even if a metabolic network structure

is known reaction by reaction, this does not mean that we understand the network-wide behavior, i.e.

which overall flux distributions are possible, and what overall flux distributions are useful for the cell. Our

aim here is to make the step from structural information (about the network) to physiological insights

about how the network can be used. We can learn, for example, how much biomass can be made from a

certain amount of glucose, and whether an enzyme deletion is lethal because a certain precursor cannot

be produced anymore.

Metabolic network structures (in the form of stoichiometric matrices) are approximately known for many

microbial species, and to some extent for higher organisms. Together with the constraints outlined above,

this network determines a range (or “space”) of possible flux distributions. In this chapter we will charac-

terize this space of possible flux distributions according to our assumptions, and since we characterize

fluxes entirely by constraints the models will be called “constraint-based models”. We will get to know

mathematical tools to characterize this space in a simple way: for instance, to describe all possibilities

that a metabolic network provides we can use Elementary Flux Modes (EFMs).

In the next chapter, we will combine such constraint-based models with optimality principles: out of the

space of possible flux distributions, specific “optimal” flux distributions will be selected because these are

supposedly “most profitable”, either for the cell or for metabolic engineering purposes. Some of the flux

prediction methods that we will describe refer also to concentrations; for instance, metabolite concentra-

tions play a role in thermodynamic constraints that exclude certain flux directions, and enzyme concen-

trations come into play in models that associate fluxes with an enzyme demand. However, in all cases,

the connection between fluxes and concentrations is very simple, and real enzyme kinetics are ignored.

In later chapters, we will then see how the models change when more and more of the complex details

are added about metabolite concentrations, enzyme kinetics, and thermodynamics.
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4.2 The flux cone

4.2.1 Mass-balance constraints

As described in the introduction, ourmodelswill be built on themetabolic network of all chemical reactions

that an organism can catalyze. We can conveniently summarize all these chemical reactions as an (m×n)-
dimensional stoichiometricmatrixNwhere each of them rows corresponds to ametabolite at steady state

and each of the n columns to a given reaction. The entry Nij is the coefficient of the i-th metabolite in the

j-th chemical reaction equation. Then, we can gather all n reaction rates in an n-dimensional flux vector:

v = (v1, . . . , vn)T . This is convenient because the multiplication Nv now captures the net production and

consumption of all m metabolites at this flux distribution, and is therefore equal to the time derivative

of the metabolite concentrations: ċ = Nv. Therefore, the steady-state assumption combined with the

assumption that dilution of metabolites due to growth is negligible, can be mathematically captured in a

set of linear equations that we call themass-balance constraints on v:

ċ = Nv = 0. (4.1)

Since in a typical metabolic reaction network the number of metabolites is smaller than the number of

reactions (m < n), the equations for v are under-determined. This means that there are infinitely many

solutions, v, that satisfy the mass-balance constraints. The space of all such v is called the null space of N.

In the absence of any additional constraints on v, each vi can take on both positive and negative values,

where a negative value would mean that the reaction runs in the reverse direction. However, it will often

be more intuitive to think of reaction rates as positive quantities, for example when we want to deduce

necessary enzyme levels from the reaction rates by assuming that enzyme levels are directly proportional

to the catalyzed reaction rate: vi ∝ ei. Therefore it is often convenient to replace each reversible reaction

by a forward irreversible reaction v+
i and a backward irreversible reaction v−

i . Mathematically, we thus

introduce non-negative variables v+
i , v

−
i ≥ 0 such that vi = v+

i − v−
i . The mass-balance constraints in

these new variables become

0 = Nv = Nv+ − Nv− =
(

N −N
)(v+

v−

)
(4.2)

where v+ = (v+
1 , . . . , v

+
n )T and v− = (v−

1 , . . . , v
−
n )T , respectively. The mass-balance constraints (4.2) com-

bined with the property that v+
i , v

−
i ≥ 0 can be expressed in the form

A

(
v+

v−

)
≥ 0 (4.3)

where

A =


N −N

−N N
I 0
0 I

 .

In this form the set of constraints on (v+,v−)T define a polyhedral cone and from the condition v+
i ,v

−
i ≥ 0

we see that the cone is also pointed, meaning it contains no complete line and the zero vector is the only

vertex (extreme point) of the cone (see Figure 4.1 for an illustration). The space of solutions that satisfies

(4.3) is called the flux cone. It is important to remember that we only get a pointed polyhedral cone because

we have chosen a representation where all reactions are irreversible; it is certainly possible to do useful

analyses in the original spacewith reversible reactionsv. In what follows however, wewill simplify notation

by identifying v with v = (v+,v−)T and use N in place of (N,−N) with the implicit understanding that all

components of v are non-negative and N accounts for all forward and reverse reactions that exist in the
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Figure 4.1: A pointed polyhedral cone,

network. In this notation the flux cone is defined as the space

FC = {v | Nv = 0, v ≥ 0} (4.4)

where notation v ≥ 0 demands that each component of v is non-negative.

To provide a concrete example, we consider the simple representation of central carbon metabolism pre-

sented in Figure 4.2. In this example there are four external metabolites, Gex, O, P1, P2 and two internal

metabolites: Gin and P . In our model we only require mass-balance for internal metabolites, such that the

steady-state constraint can be written as

Nv =

(
1 −1 0 0 0
0 2 −1 −1 1

)
v0
...

v4

 = 0, (4.5)

where each column thus corresponds to one of the five reactions and where the rows correspond to Gin

and P respectively. The 1 in the first row of the first column thus corresponds to the import of one glucose

moleculeGin. In a small example like this, it is still tractable towrite out all separate steady-state equations:

0 = v0 − v1, 0 = 2v1 − v2 − v3 + v4. (4.6)

These two mass-balance constraints combine with the non-negativity conditions v0, v1, v2, v3, v4 ≥ 0 to

define the flux cone as the space of all flux vectors, v, that satisfy all of these constraints simultaneously.

4.2.2 Elementary flux modes

Although (4.4) already gives a mathematical description of the flux cone, we will here derive a more useful

characterization of this space. One of the main problems of the description in (4.4) is that it does not

give us a method to generate (or express in mathematical terms) a steady-state flux distribution, even

though it makes it easy to check that any v is in FC. Below, we will instead introduce an exhaustive set of

generators: minimal flux distributions that can be combined to make all possible flux distributions in FC,

called elementary flux modes (EFMs). One can think of these EFMs as minimal building blocks that generate

the flux cone, similar to how basis vectors generate a linear space, but with a particular rule for combining

them as we describe below.

An important property of pointed polyhedral cones such as FC is that there exists a unique minimal set

of n-dimensional generators {e1, . . . , eK} such that FC can also be represented as

FC =

{
v
∣∣∣∣ v =

K∑
k=1

λkek, λk ≥ 0 ∀k

}
. (4.7)
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Figure 4.2: A simple representation of the metabolic reaction network for central carbon metabolism.
Extracellular glucose, Gex, is imported into the cell via reaction with flux v0 and converted via intracellular
glucose,Gin, to pyruvate, P , via the reactionwith flux v1 that has a stochiometry coefficient of two pyruvate
molecules to each glucosemolecule. Pyruvate can then either be converted to a fermentation product, P1,
via the reaction with flux v2 or, in the presence of oxygen, O, converted to an oxidative phosphorylation
(OXPHOS) terminal product P2 via the reaction with flux v3. The fermentation product P1 can also be
converted back to pyruvate via the reaction with flux v4.

We must remark here that the generators ek are only defined up to scalar multiplication, i.e. any αek with

α > 0 could replace ek in the set of generators. Each generator ek represents one of the K extreme rays

or “edges” of the pointed cone, and for metabolic reaction networks they turn out to have a particularly

useful biological interpretation, which we shall see shortly. In essence, property (4.7) says that any flux

vector v in the space FC can be expressed as a conical combination of generators {e1, . . . , eK}.

To illustrate the concept of EFMs, we return to the simple representation of central carbon metabolism

presented in Figure 4.2 that is associated with the stoichiometric matrix

N =

(
1 −1 0 0 0
0 2 −1 −1 1

)
(4.8)

and corresponding flux vector v with components v0, v1, v2, v3, v4 ≥ 0. A set of EFMs that serve as genera-

tors for the resulting flux cone is given by

e1 =


1
1
2
0
0

 , e2 =


0
0
0
1
1

 , e3 =


1
1
0
2
0

 , (4.9)

and these are depicted in Figure 4.3. In fact, because we split the reversible reactions into a forward

and backward reaction, the combination of reactions v2 and v4 would also be an EFM, but we discard

such cycles created by splitting reversible reactions. We see from our understanding of central carbon

metabolism that these three EFMs represent the fundamental metabolic pathways of glycolytic fermenta-

tion (e1), oxidative metabolism of the fermentation product (e2), and oxidative metabolism of glucose (e3).

The definition of the flux cone in terms of EFMs as in (4.7) is in this example equivalent to the statement that

any flux vector v in our toy carbon metabolism network can be viewed as a (non-negative) weighted com-

bination of these three minimal metabolic pathways. This interpretation remains true for any metabolic

reaction network: elementary flux modes represent the minimal metabolic pathways through the metabolic

reaction network at steady state.

We can make this more precise with a mathematical definition. First, let us introduce the support of a

vector as supp(v) = {i | vi 6= 0}, i.e. the support of a flux vector is the set of reactions that have a non-zero
rate.

Definition 1. A vector v is an EFM if and only if it satisfies the following two properties:

1. v ∈ FC,
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Figure 4.3: EFMs e1, e2, e3 overlaid on the simple metabolic reaction network in Figure 4.2 with concen-
trations of intracellular glucose and pyruvate assumed to be at steady state. It can be seen from our
understanding of central carbon metabolism that e1 represents the glycolytic fermentation pathway, e2

the oxidative metabolism of the fermentation product, and e3 the oxidative metabolism of glucose.

2. for all v′ ∈ FC, if supp(v′) ⊆ supp(v) then either v′ = 0 or v′ = αv for some α > 0.

This means that v is an EFM only if there is no non-zero flux vector in the flux cone that uses only a subset

of the reactions that are active in v. This also means that if any of the flux-carrying reactions in an EFM

is deleted, the flux through the resulting reactions must violate the mass-balance constraints and can

therefore not occur in steady-state metabolism; the EFMs are thus minimal in the sense that they cannot

be reduced further.

One may now wonder how it is possible that we have seen two definitions of EFMs. First, we introduced

them as the extreme rays of the flux cone; then, we introduced them as support-minimal metabolic sub-

networks. Indeed, the beautiful thing about EFMs is that these two characterizations are equivalent (see

the Mathematical details-box for a proof). These two definitions of EFMs are complementary. Under-

standing EFMs as minimal metabolic subnetworks enables us to interpret an EFM in terms of its biological

function; an EFM can be seen as ametabolic strategy that a cell can use to obtain steady-statemetabolism,

and which it can combine with other strategies to reach its purpose. The extreme ray-interpretation on

the other hand, allows us to write an arbitrary flux vector v ∈ FC as a combination of EFMs, as is done in

(4.7). This also means that we can learn something about all flux vectors v by learning something about

all EFMs. For example, if we know that there is no EFM that produces compound Y without using reaction

r, this immediately implies that there is no flux vector at all that can do this, and that reaction r is thus es-

sential for the production of Y . In addition, as we will discuss below, the identification of EFMs as extreme

rays enables the use of efficient computational algorithms to enumerate them.

We note that there is currently no limit on the amount of flux that a particular EFM may carry, since λek

is also an EFM for any λ > 0 when ek is an EFM, and consequently the absolute value of any flux vector v
in FC remains unbounded. However, we will see in the next section that this is not necessarily true when

additional constraints are introduced.

4.2.3 Irreversibility constraints

In principle, all reactions in a metabolic reaction network are able to run in both directions, but in many

practical examples certain thermodynamic arguments can be used to justify treating a subset of reactions

as irreversible, meaning that for all modeling purposes they can only run in one direction. This stems

from their activation energy being so large for realistic levels of products and substrates that the rate of

the reverse reaction is effectively negligible compared to the rate of the forward. The choice of which

reactions to assume irreversible is a decision to be taken by the modeler and may affect the results of

the downstream constraint-based analysis. Returning to the simple model for central carbon metabolism

provided in Figure 4.2, the reactions importing glucose into the cell, converting it to pyruvate, and the

production of product P2 are assumed to be irreversible. Amore detailed representation of central carbon

metabolism may allow for the first two reactions to be reversible such that ‘gluconeogenesis’ becomes

possible. This would result in the introduction of a fourth EFMassociatedwith the conversion, via pyruvate,
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Math box 4.A Characterizations of Elementary Flux Modes

In this box we will prove (following Gagneur and Klamt [97]) that the two characterizations of elementary flux

modes that we gave in this chapter are equivalent. To prove this, we should first make precise what we mean

when we define EFMs as ‘extreme rays’ of the flux cone. Let us start generally: a pointed polyhedral cone P is

defined by a full rank matrix A such that

P = {x ∈ Rn : Ax ≥ 0},

(as illustrated in Figure 4.1). Such a cone is thus defined as all points that satisfy a certain set of linear inequalities,

which can be seen as a region bounded off by halfspaces. Note that the definition of the flux cone as given in (4.4)

can be written in this form by taking A = [N, −N, In×n]T , where In×n is the identity matrix, so FC is indeed a

pointed polyhedral cone.

A vector, r, is a ray of P if αr 6= 0 and for all α > 0 we have r ∈ P. Each ray r ∈ P has a zero set defined as

Z(r) = {i : Ai•r = 0}. Thus, the zero set is the index set of inequalities that are met with equality by the ray r.
We call r an extreme ray when for all r′ ∈ P if Z(r) ⊆ Z(r′) then r′ = αr for some α > 0. In other words, a ray is

called extreme if the set of inequalities that it satisfies with equality cannot be increased. With this we are ready

for specifying our second definition of EFMs, after which we can prove the equivalency of the two definitions.

Definition 2. A vector v is called an elementary flux mode if it is an extreme ray of the flux cone FC.

Lemma 1. In a metabolic network captured by stoichiometric matrix N in which all reactions are irreversible, the def-

initions of elementary flux modes as the extreme rays of the flux cone (Def. 2) and as support-minimal steady-state flux

vectors (Def. 1) are equivalent.

Proof. Let v be an elementary flux mode according to Definition 1. The first requirement in this definition imme-

diately implies that v is a ray of the flux cone, where we can define the flux cone as all x ∈ Rn such that Ax ≥ 0
with: A = [N, −N, In×n]T . To show that it is also an extreme ray, let us assume that there is another ray v′ such

thatZ(v) ⊆ Z(v′). Since all rays ofFCmust satisfy the first 2m inequalities, this specificially means that whenever

vi = 0 for some 1 < i < n, also v′
i = 0, i.e. supp(v′) ⊆ supp(v), but according to Property 2 of Definition 1 wemust

then have v′ = αv. This implies that v is indeed an extreme ray, so it is also an EFM according to Definition 2.

For the converse, let v be an EFM according to Definition 2. Again, this immediately shows that v ∈ FC, so we

should now show that it is support-minimal. For that, let v′ ∈ FC such that supp(v′) ⊆ supp(v). This means

that whenever v′
i = 0, also vi = 0. Since v and v′ both satisfy the first 2m inequalities of Av ≥ 0 with equality,

and this shows that whenever v′ saturates one of the last n inequalities, then also v does this, we conclude that

Z(v) ⊆ Z(v′). Using Definition 2 this implies that v′ = αv for some α > 0. This shows that v is indeed support-

minimal, and is thus an EFM according to Definition 1.

of the fermentation product to glucose that is then exported out of the cell.

More generally, in our mathematical description of the metabolic network (4.4), we decomposed each

reaction into a forward and a reverse reaction, treating each as individual degrees of freedom, and impos-

ing additional irreversibility constraints is thus as simple as removing a reverse reaction from the network.

When this is done, the EFMs of the resulting network do not need to be re-calculated, but can be obtained

by simply removing all the EFMs that use the removed directions. This nicely shows the complementar-

ity of Definitions 1 and 2 of EFMs: although it is not easy to see that the set of extreme rays of the new

flux cone will be a subset of the previous set of extreme rays, it is easy to see that each vector that is a

support-minimal flux vector after the removal of some reactions, must have been a support-minimal flux

vector before that. The new flux cone is therefore made up of all flux vectors that are expressed as conical

combinations of the remaining EFMs, and remains non-bounded.

4.2.4 Practical uses of elementary flux modes

EFMs represent the full set of possible metabolic capacities of an organism, which can therefore make

EFM analysis a useful tool for biology. To this end, application of EFM analysis to bioengineering has been

proposed to guide the genetic manipulation of microorganisms to perform desirable properties such as
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synthesis of a bio-compound or efficient production of a recombinant protein (e.g. [98, 99]). From a more

theoretical point of view, EFMs have also been used in attempts to quantify cellular robustness [100], in

particular regarding robustness under genetic perturbations [101]. The relevance of elementary fluxmode

analysis to cellular robustness stems from the fact that there is rarely a unique conical combination of

elementary fluxmodes for any given flux vector, which implies there aremultiple combinations ofminimal

metabolic pathways to achieve the same desired effect. This redundancy can be interpreted as a measure

for the metabolic robustness of an organism, in terms of preserving essential metabolic functionalities

under loss of a gene, for example.

There have also been several ways that EFM analysis has been incorporated into analysis of multi-omics

data. For example, on the basis of transcriptomic profiling of microorganisms, metabolic pathways asso-

ciated with elementary flux modes have been scored according to their probability of carrying flux [102].

The principle here is that, although levels of RNA often serve as a poor proxy for flux through the reaction

associated with that particular enzyme’s gene, by creating a gene set associated with an entire EFM there

might be abetter chance of concretely assessingwhether themetabolic pathway as awhole is likely to carry

flux. The study [102] suggested that the integration of EFM analysis with gene expression data enabled

the identification of certain metabolic pathways activated during stress conditions, and that the organiza-

tion of elementary flux mode utilization in Saccharomyces cerevisiae involves a disparate combination of

highly specialized andmulti-tasking roles. Beyond transcriptomic profiling, isotope tracing experiments in

principle provide a much more direct insight into quantifying metabolic flux. To interpret isotope tracing

data, an extension of the concept of an EFM was introduced in [103].

4.2.5 Computational challenges for elementary flux mode analysis

Enumerating EFMs for large networks can be computationally challenging if not impossible. In principle,

EFMs can be found by removing one reaction at a time and solving the resulting mass-balance constraint

problem until it is no longer possible to remove a reaction and still obtain a flux vector that satisfies the

steady state conditions. However, the one-to-one identification of EFMs with extreme rays of the flux cone

that we described before enables the use of algorithms that are specialized in the efficient enumeration

of extreme rays of polyhedral cones, such as the double description method [104]. Various tools have

been developed for elementary flux mode enumeration based on this algorithm (e.g. EFMTOOL [105] or

MetaTool [106]). However, when the size of the metabolic reaction network grows, the number of EFMs

scales disproportionately, leading to a combinatorial explosion that effectivelymakes enumeration impos-

sible for genome-scale networks containing several thousands of reactions [107]. Currently, EFM analysis

is therefore restricted to medium-scale reconstructions containing on the order of several hundreds of

reactions, and results in the identification of several hundred million EFMs (e.g. enumeration based on

the Escherichia coli core model results in approximately 272 million EFMs).

Approaches to reduce the complexity of dealing with so many EFMs even for metabolic reaction networks

of modest size have also been proposed. These include invoking transcriptional regulatory constraints

to eliminate most of the EFMs to be considered in downstream analysis. Imposing additional constraints

based on thermodynamic conditions similarly reduces the set of EFMs considerably. A problemwith these

approaches is evidently that they do still depend on an initial calculation of all EFMs, and so do not solve

the problem of enumeration complexity. A rigorous study of the complexity of EFM mode enumeration

was performed by Acuña and colleagues [108]. They showed that the decision problem if there exists

an EFM containing two specific reactions is NP-complete whilst the complexity of enumerating all EFMs

remains open.

Later in this chapter we will explore some alternatives to EFM enumeration that reduce the difficulty of

enumeration, cf. Section 4.4.
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4.3 Additional constraints and flux polyhedra

4.3.1 Inhomogeneous linear flux constraints

We have so far been working exclusively with mass-conservation and irreversiblity constraints, which are

captured entirely by the stochiometric matrix where each row is associated with a metabolite concentra-

tion at steady state. We also saw that these considerations alone result in a flux cone that is by definition

unbounded, meaning that a flux vector in this space is allowed to take on any absolute value (i.e. multi-

plying a flux vector in the flux cone by an arbitrarily large positive number again returns a flux vector in

the flux cone). However, there are physical constraints limiting the magnitude of flux vectors, especially

on the values of flux through exchange reactions that may depend on concentrations of extracellular sub-

strates, numbers of transporter molecules in the membrane, or for which we might have direct experi-

mental measurements. Typically, such bounds on flux values are imposed using inequality constraints of

the form vlb
i ≤ vi ≤ vub

i where vlb
i and vub

i are lower and upper bounds, respectively, for the flux through

the ith reaction. When reactions have been decomposed into forward and reverse directions, both upper

and lower bounds are non-negative where the latter is usually zero.

In the example from Figure 4.2 onemay impose an upper bound on the flux value v0, suggesting that there

is a maximal rate at which the cell or organism can import glucose from the extracellular environment. In

this case the total set of constraints on the flux vector v take the form

Nv = 0, v ≥ 0, v0 ≤ vub
0 (4.10)

where vub
0 is the maximal glucose uptake rate. It is important to note that the new constraint is of a dif-

ferent kind than the mass-balance and irreversibility constraints: the right-hand side of the constraint is

non-zero. Constraints that involve a non-zero are called inhomogeneous constraints. We can write these

constraints in matrix form as

Av ≥ b (4.11)

with

A =


N

−N
I
G

 , b =


0
0
0
h

 , (4.12)

where in this particular case

G =
(

−1 0 0 0 0
)
, h =

(
−vub

0

)
. (4.13)

In general, the matrix G will have P rows corresponding to P linear, inhomogeneous constraints of the

form ∑
i

wp
i vi ≤ hp, p = 1, . . . P (4.14)

where each hp corresponds to a component of the P -dimensional vector h and nweights wp
i (i = 1, . . . , n)

are supplied for each constraint. Many constraints can be written in this general form, for example, one

might imagine modeling a bound on the total flux that a cell can catalyze, which would be captured by

setting all weights equal to 1. In this form the set of constraints on v define a general polyhedron that is

necessarily containedwithin the flux conewhichwas based only on the homogeneous constraints: Nv = 0
and v ≥ 0. The additional inhomogeneous constraints serve to sequentially close up the cone such that

various (if not all) dimensions become bounded, thus bounding the total magnitude of the flux vector v.

In the example described above, bounding the extracellular glucose uptake rate puts an upper bound on

the weights of EFMs e1, e3 illustrated in Figure 4.3, whose support includes the glucose transport reaction.

However, the weight of the EFM associated with uptake and oxidation of the fermentation product (e2)

can remain unbounded. In short, this restricts the values of weights λ1, λ2, λ3 in the representation (4.7)
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λ1+λ3=v0ubλ3

λ1
Figure 4.4: Representation of the bounded convex plane within which a flux vector satisfying the mass-
balance and maximal glucose uptake constraints must lie. The possible combinations of EFM weights λ1
and λ3 are contained within or on the line in blue given by the equation λ1 + λ3 = vub

0 .

λ1

λ3

λ2

Figure 4.5: Geometry of the flux polytope (blue) containing any flux vector that satisfies the mass-balance
and maximal glucose uptake rate constraints. While bounded in the directions parameterized by λ1, λ3, it
remains unbounded in the direction parameterized by λ2.

to satisfy

λ1, λ2, λ3 ≥ 0, λ1 + λ3 ≤ vub
0 .

Recalling that each EFM is associated with an extreme ray of the flux cone coming from mass-balance

constraints, for this simple example it is quite straightforward to interpret the geometric consequences of

the maximal glucose uptake rate. Any flux vector v in the resulting flux polytope is now constrained to lie

within the bounded convex plane represented in Figure 4.4, but remains free to take on any value along

the remaining extreme ray parameterized by λ2. The maximal glucose uptake has therefore closed up the

flux cone along two directions while leaving the third untouched, and the geometry of the resulting flux

polytope is represented in Figure 4.5. Imposing an upper bound on the uptake rate of the fermentation

product, of the form v4 ≤ vub
4 , will serve to bound this remaining direction of the polytope such thatweights

of the EFMs are then restricted to the space defined by

λ1, λ2, λ3 ≥ 0, λ1 + λ3 ≤ vub
0 , λ2 ≤ vub

4 . (4.15)

More general constraints, for larger metabolic reaction networks will be more difficult to interpret and

visualize in such simple geometric terms. Quite quickly the combinatorial complexity associated with

combinations of multiple constraints and EFMs will become unmanageable. The intuitive treatment of

inhomogeneous linear constraints is partially assisted using the concept of elementary flux vectors on

which we will add a section in a later version of this book, but both geometrically and biologically these

objects are nowhere near as easy to interpret as their EFM counterparts. We shall see that alternative

computational methods for exploring flux space therefore become imperative.

As a final remark, we clarify oncemore that the general form of constraints (4.14) is by nomeans restricted

to sums on the left hand side that involve just a single reaction and can of course include constraints
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on weighted sums of flux values for different reactions. These weighted sums are often associated with

particular biological interpretations: for example, in the metabolic reaction network from Figure 4.2 we

might want to restrict our search of flux space to those flux vectors v that produce adenosine triphosphate

(ATP) at a rate of at least vAT P . Although a more elaborate model would of course include ATP as one of

the metabolites, in this example we can use our biological understanding of central carbonmetabolism to

see that ATP is produced in reactions v1 and v3. A lower bound on ATP production would thus be a lower

bound on a combination of v1 and v3 with weights determined by stoichiometry which depends on the

organism under investigation. We could write such a constraint as

w1v1 + w3v3 ≥ vAT P (4.16)

with appropriate weightsw1, w3. Such a constraint forms an additional row of thematrix G and we leave it

as an exercise for the reader to explore how this affects the geometry of the flux polytope for various values

of the weights, minimal ATP production rate andmaximal glucose and fermentation product uptake rates.

Particular combinations of constraints will be impossible to satisfy simultaneously (i.e. when the minimal

rate of ATP production is impossible to achieve under the given bounds on glucose and fermentation

product uptake rates), resulting in a flux polytope that is empty. In such cases the set of constraints on v
are called infeasible.

4.3.2 Thermodynamic constraints

In Chapter 3 the basic concepts of chemical thermodynamics were introduced, in particular, the Gibbs free

energy of a metabolic reaction was defined in terms of the concentrations of its products and substrates.

For a metabolic reaction network with stochiometric matrix N, the vector of Gibbs free energies (one for

each reaction in the network) ∆rG′ can be written in matrix form as

∆rG′ = ∆rG′o +RT · NT · ln(c) (4.17)

where R is the gas constant (see section 3.2.3), T the temperature and c the vector of metabolite con-

centrations at steady state. The components of the vector ∆rG′o are the changes in standard Gibbs free

energy for each corresponding reaction. Typically, these values are not knownprecisely for reactions in the

network, but can be estimated or approximated from experimental data usingmethods beyond the scope

of this chapter. Similarly, although it is often difficult to accurately measure all metabolite concentrations,

in principle the vector c can be obtained experimentally. However, in practice experimental data on c and
∆rG′o are almost never available. Various methods have therefore been developed to combine estima-

tion of ∆rG′o (sometimes with partial measurements of c) with advanced computational techniques that

allow simultaneous optimization (see next chapter) or sampling (see below) of v and c (or equivalently:

∆rG′).

The second law of thermodynamics applied to chemical reaction networks can be summarized by saying

that every component of the metabolic flux vector v must satisfy the condition

sign(vi) = −sign(∆rG
′
i) (4.18)

where vi and ∆rG
′
i are the ith components of v and ∆rG′, respectively, and sign(x) denotes the sign of a

variable x, and sign(0) = 0. It is important to point out that this notation is different to that used previously,

where we had assumed all vi to be non-negative by decomposing each reaction into irreversible forward

and backward reactions. Returning to this reversible notation simplifies the inclusion of thermodynamic

constraints into constraint-based models and also their interpretation. According to the second law, a

reaction can only proceed in a direction where the change in Gibbs free energy is negative. Thus, to be

consistent withmass-balance and the second law of thermodynamics, a flux vector vmust simultaneously

satisfy both (4.1) and (4.18), with ∆rG′ defined in (4.17). The consequence of these additional constraints

on the geometry of the space of metabolic flux distributions is to exclude quadrants incompatible with



Alternative methods for flux space exploration 67

the signs of ∆rG′. Equivalently, imposing the second law of thermodynamics on metabolic flux distribu-

tions removes regions of the space that are associatedwith combinations of thermodynamically-infeasible

reaction directionalities.

The resulting space of feasible flux vectors is almost always non-convex, which means more advanced

computational methods are required to explore it efficiently. The intuitive reason for this is that imposing

thermodynamic constraints on top of the mass-balance constraint is usually done in terms of Boolean

variables, which breaks the linearity of the problem that we had and exploited so far. Relating this to the

EFMs that were discussed previously, it for example becomes clear that any EFM representing an internal

cycle –not including any exchange reactions– will never be thermodynamically feasible. Thus, thermody-

namic constraints also reduce the set of EFMs that are possible in a metabolic network. Interestingly, it

turns out that any thermodynamically-feasible metabolic flux vector can be expressed solely in terms of

thermodynamically-feasible EFMs [109], but the converse statement is not true: a linear combination of

thermodynamically-feasible elementary flux mode does not necessarily satisfy the thermodynamic con-

straints. This shows how the workable properties of convex spaces break down as themathematical mod-

els become more complex, in this case by accounting for thermodynamics.

4.4 Alternative methods for flux space exploration

As we described above, exploration of all possible flux distributions using EFMs can become very complex

for larger models. A genome-scale model, which comprises all metabolic reactions that an organism can

catalyze, typically contains thousands of reactions, which prohibits the enumeration of EFMs. At the mo-

ment, it is unclear whether, even if we would have an enormously fast computer that could compute all

EFMs, the number of EFMs would not be so large that we cannot store the EFMs anywhere, nor analyze it

in any meaningful way. Here we discuss several alternatives for exploring the metabolic capabilities of a

cell that try to avoid the combinatorial complexity that hinders EFM analysis.

4.4.1 Elementary conversion modes

If we are interested in the metabolic capabilities of an organism, is it always necessary to know all possible

flux vectors? For example, what if we want to lab-culture an organism of which we have a reconstructed

metabolic network, but no idea what nutrients it needs to grow. Then we only need to know from what

combinations of nutrients it can make all its cell components. Or, what if we want to model the possible

cross-feeding interactions between several microbial species? Then we aremostly interested in what each

of them can consume and produce, and not really in how they do that. Elementary conversion modes

(ECMs), introduced in 2005 by Urbanczik and Wagner [110], capture all possible overall conversions from

nutrients to products that an organism can catalyze, while ignoring which individual reactions are used for

this.

ECMs focus on the net results of metabolism, i.e. on the uptake and production of compounds external

to the metabolic network, such as sugars, nitrogen sources, fermentation products but also ‘biomass’.

To get information about these compounds we need to extend our metabolic network by including the

external compounds as rows in the stoichiometry matrix; this is in general easy to do since we already had

exchange reactions (reactions where an external compound was imported or exported) so we only have

to find the stoichiometric coefficient in which the external compound was involved in these reactions. Let

us denote the original stoichiometry matrix by Nint and the submatrix that we add by Next; together they

form Ntot. We can then define the conversion cone:

C = {ċ = Nextv | Nintv = 0,v ≥ 0} . (4.19)

If we look carefully at this definition we can see that the flux vectors v need to satisfy exactly the same

constraints as in the flux cone (Eq. (4.4)). The only difference between flux and conversion cones is that

we are either interested in the fluxes themselves, or rather in the conversions that they induce: ċ = Nextv.
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Figure 4.6: (A) Small toy network with three ECMs shown in blue, yellow and red. Note that the red mode
can be decomposed as a positive combination of the blue and yellow elementary conversion modes, but
that would cancel the production ofB so this is not allowed. (B) The conversion cone is shown in gray, and
the blue and yellow arrow correspond to the blue and yellow ECMs are the extreme rays. The red ECM
needs to be added because it is on the intersection with the Ḃ = 0-plane.

Definition 3. The set of ECMs is the minimal set of conversions {ecm1, . . . ecmK} (where ecmi
k is the amount of

metabolite k produced in the ith elementary conversion mode), such that

1. all conversions ċ ∈ C can be written as a positive sum of these elementary conversion modes: ċ =
∑

i
λiecm

i,

with λi ≥ 0,
2. without the production of any metabolite being canceled in that sum, i.e. for all metabolites k we either have

for all λi > 0 that ecmi
k ≥ 0 or for all λi > 0 that ecmi

k ≤ 0.

We will explain both parts of this definition below, but let us first remark that the definition is in fact

perfectly analogous to the definition of EFMs: EFMs are the elementary vectors (or precisely: conformally

non-decomposable vectors) of the flux cone, and ECMs of the conversion cone. The reason that the def-

inition of ECMshas an additional requirement (2.) is just that the analogous requirementwas automatically

satisfied for EFMs because we assumed all reactions to be irreversible.

In Figure 4.6A we show a small metabolic network with external metabolites A, B and BM , and internal

metabolites C,D andE. We can find 9 EFMs in this network: one that goes fromA toB, four that produce

BM starting from A and four that produce BM from B. We get four EFMs to go from A to BM because

there are two ways of going from C to D and again two for converting D into E. This makes clear that

having a number of modules of alternative reactions can quickly give rise to large numbers of EFMs, even

though the overall conversion from nutrients to products remains the same. In contrast, we will explain

that we only get three ECMs.

In Figure 4.6Bwe see the conversion cone in gray. Note that this cone does not live in flux space, but rather

in the space of external metabolite changes, or conversions. We recognize that the cone can be spanned

by two extreme rays, which correspond to converting A into B (blue) and to using 2B to produce BM

(yellow), so these rays correspond to elementary conversion modes following the first part of Definition 3.

Now why do we have a third ECM, when the blue and yellow one already span the whole conversion cone?

Indeed, the third vector in Figure 4.6B can be obtained by summing the yellow vector and two times the

blue vector: 2(−1, 1, 0) + (0,−2, 1) = (−2, 0, 1). However, note that the production of metabolite B would

cancel in this sum, which is not allowed according to the second part of Definition 3. The reason that

this second part of the definition is important, is that the elementary conversion modes are intended to

capture all metabolic capabilities of an organism, so taking only the first twomodes would not be enough:

we also want to account for the possibility of making BM from A even if we decide that the elementary

conversion mode from B to BM is not possible in the current environment, for example because B is not

present as a nutrient in the medium.
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Because many EFMs result in the same overall conversion, the exploration of metabolic capabilities can

now be done in larger networks, at the cost of ignoring information about which reactions are used [111].

This way of thinking can be pushed even further: what if one is not interested in the conversions between

all nutrients and products, but only between a subset of these? In that case, one would want to compute

the ECMs only between the external metabolites of the most interest. This can be done with a small trick.

Say that we are not interested in the production of externalmetaboliteX. Beforewe start the enumeration

algorithm we add a virtual reaction to the network that consumes and produces X from nothing, i.e. we

addX � ∅, and then we changeX from an external metabolite to an internal metabolite. Consequently, it

now has to satisfy the mass-balance constraint (which can always be done trivially using the added virtual

reaction), and will thus never show up in the computed elementary conversions. In this way it was possible

to compute all ECMs between glucose, oxygen and biomass for a real genome-scale network of E. coli.

4.4.2 Flux sampling

In addition to the computational complexity of EFM enumeration for large metabolic networks, these ob-

jects are not necessarily related to experimentally-derived flux measurements. This is because when a

vector of experimentally-measured flux values v would be decomposed into EFMs, this generally does not

give a unique solutions because it can be done in many ways. Flux sampling methods can be employed to

solve both the computational and interpretability problems simultaneously, exploring the set of flux vec-

tors (i.e. directlymeasurable in principle) by computationally sampling from the flux space. The goal of flux

sampling in general terms is to produce a sequence of flux vectors that satisfy the steady state constraints

until enough samples have been generated to provide an approximate representation of the entire flux

space. The flux polyhedra defined by mass-balance and additional inhomogenous linear constraints are

convex, and therefore uniform sampling of these flux spaces can be achieved using variants of an algo-

rithm developed for convex analysis called the coordinate hit-and-run (CHR) algorithm [112]. Briefly, the

most basic implementation of the CHR algorithm generates a Markov chain of flux vectors by starting in a

random position within the flux polytope, picking a direction at random (uniform), and moving a random

distance (uniform) in that direction from the current point. The resulting point is returned as a flux vector

instance and the process repeats from there. It has been proven that the CHR algorithm converges to a

stationary distribution of the Markov chain that is a uniform distribution in the flux space. Alternatives

to uniform sampling (i.e. alternative distributions across the flux polytope) can also be achieved using

variants of the CHR algorithm.

As highlighted previously in Section 4.3.2,mass-balance and inhomogeneous linear constraints alone often

do not contain enough information to sufficiently reduce the space of biologically-feasible flux vectors. For

example, thermodynamic constraints on flux vectors are important for ruling out a large proportion of the

sampled flux vectors as infeasible, but this may disproportionately dominate the resulting sampling distri-

butions. Unfortunately, for mathematical reasons too deep to go into here, simply removing these infea-

sible flux distributions post-sampling will not result in a uniform distribution over the thermodynamically-

feasible portion of flux space. In fact, this relevant subset of flux space cannot be defined explicitly, and

is usually neither convex nor connected meaning that no Markov chain methods exist for sampling. As an

alternative, a recent method [113] has been developed to combine thermodynamic constraints, physio-

logical observations and estimated thermodynamic parameters, with mass-balance and inhomogeneous

linear constraints to provide a probabilistic thermodynamic analysis of metabolic reaction networks. Ad-

vances such as these will almost certainly aid a more complete characterization of flux space as data and

methods become available.

4.4.3 Minimal cut sets

A minimal cut set (MCS) is a set of reactions that, when disabled, disables a set of modes, which in turn

can represent a biological function, such as the secretion of a side product. This enables the prediction

of gene deletion targets, given that the genes coding for the involved reactions are known. A cut set is

minimal if the removal of one or more reactions from the set leads to at least one of the targeted modes
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not being disabled.

In order to avoid also disabling desired functionalities, such as product secretion and growth, the concept

of constrainedminimal cut sets (cMCSs) has been developed. cMCSs enable targeting a set of modes while

at the same time making sure that some elements of another set of modes will remain active.

Motivation for (constrained) Minimal Cut Sets The concept of MCSs was introduced by Klamt and Gilles

in 2004 [114] and subsequently generalized and improved [115, 116, 117]. As briefly outlined above, the

idea is to define a set of EFMs which should be disabled, for example because they generate an unwanted

side product or because they don’t generate the product of interest with a sufficiently high yield. Since

EFMs are minimal, removing a single reaction will disable it. A cut set is a set of reactions of which at

least one is active in each of the EFMs in the targeted group. Thus, disabling the reactions contained in

the cut set will disable all of the targeted EFMs, and each cut set therefore represents the prediction of a

set of gene deletions. Since it would be pointless to remove reactions which only target EFMs that were

already targeted by other reactions, cut sets are required to beminimal. Thismeans that removing a single

reaction from the cut set would lead to one or more of the targeted EFMs to survive the intervention and

also that adding a single reaction to the cut set would have no additional effect on the set of target EFMs.

The pitfall when using MCSs is that while they guarantee the elimination of the targeted EFMs, all other

EFMs may be affected as well. This means that modes with desired phenotypes, such as high growth

and/or high product yield, may become impossible. Therefore, cMCSs were developed [118]. In this ex-

tension of the concept of MCSs it is now possible to additionally define a set of EFMs which are desired,

i.e. which can not be disabled by the cMCSs. This is usually implemented by the requirement that at least

a specified minimum number of EFMs of the desired set need to remain active. Summarizing, cMCSs are

sets of reactions which guarantee that (i) the full set of target EFMs is disabled and (ii) a certain minimum

of desired EFMs has to remain unaffected. The drawback, with both MCSs and cMCSs, is that the target

(and desired) EFMs need to be defined. This is generally achieved by defining cut-offs in terms of product

yield and growth, which is, however, ultimately arbitrary.

Calculation of (constrained) Minimal Cut Sets Since minimal cut sets in a metabolic network are EFMs

in a dual network [119], methods used for calculating EFMs can be used to calculate MCSs. Among other

approaches [120] one based on binary integer programming has been developed [121, 122]. While it re-

quires that the EFMs are calculated before it can be applied, the advantage is that the algorithm is very

intuitive. After having calculated the modes, each is represented as a binary vector which is zero for reac-

tions with zero flux and one otherwise. The EFMs are then divided into either targeted or desired. A binary

vector, corresponding to the cMCSs being calculated is introduced. It will have a one if the corresponding

reaction remains active and zero if the reaction is disabled. The first requirement is that cMCS needs to

disable all targetmodes and thus the vectormust have zero elements such that each target EFMmust have

at least one corresponding non-zero element. The second requirement is that at least a definedminimum

of desired modes must remain active. This is achieved by introducing a second binary vector. This vector

has an element for each EFM and is calculated so that it has a zero when themode is disabled by the cMCS

and one otherwise. By adding the constraint that the number of ones in this vector must at least equal

the previously defined minimum, the second requirement is met. Maximizing the vector corresponding

to the cMCS yields the first solution. The next solution can be found by adding constraints to make sure

that the current one is excluded.

4.5 Concluding remarks

In this chapter we studied how the individual reactions that an organism can catalyze together give rise

to the overall conversion of nutrients into cell components and secretion products. For that, we studied

the cell’s metabolism under a number of simplifying assumptions, most notably, we model metabolism

in steady-state. Given this steady-state constraint, we explained how all feasible flux distributions form a

space of a specific type: a pointed polyhedral cone. By exploring this ‘flux cone’ we can chart themetabolic
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capabilities of an organism.

We have seen that an exhaustive charting of these metabolic capabilities is the computation of all elemen-

tary flux modes: minimal subnetworks that can individually give rise to steady-state flux distributions, and

that may be interpreted as minimal metabolic strategies. An especially important use of EFM analysis can

be found in the prediction of the effect of gene knockouts: when all EFMs that produce compound Y use

reaction r, then the organism cannot make this compound when the gene is knocked out that codes for

the enzyme that catalyzes r. And conversely, sometimes gene knockouts can be found such that the cell

cannot grow anymore without producing a certain compound of interest. Clearly, these analyses can be

very useful for the design of organisms in bio-industry.

On the other hand, we also saw that for large models the computation of all EFMs becomes impossible.

There are simply too many of these minimal subnetworks. We presented several alternatives. One could

use elementary conversion modes if one still desires an exhaustive list of the metabolic capabilities of the

cell. The ECMs are easier to enumerate because one can choose to focus only on all possible conversions

between (a subset of) the nutrients and products, instead of requiring all information about which reac-

tions are used to get these conversions. For the design of gene knockouts specifically,minimal cut setsmay

be used. Finally, we discussed that the flux cone can be sampled randomly to characterize the flux cone,

if this characterization does not need to be exhaustive.

In many cases we have additional information that determines that part of the flux cone is infeasible. For

example, some metabolic fluxes may have been measured so that these reaction rates can be fixed to

their observed value. In other cases, one may want to use thermodynamic properties to prohibit reac-

tions from occurring that would violate the second law of thermodynamics. These additional constraints

can be imposed on top of the mass-balance constraint to further bound the space of feasible flux distri-

butions; each correctly-imposed constraint narrows down the space of feasible fluxes, and thus increases

our knowledge of the metabolic state of the cell.

All explorations of the space of feasible flux distributions show one unavoidable conclusion: themetabolic

network is incredibly flexible. Even when several constraints are imposed, a genome-scale metabolic

model will allow for an almost incomprehensible number of modes in which the metabolic network can

function. Consequently, to predict the metabolic state of a cell in more detail we need to make an addi-

tional assumption. In the following chapter, we will study what predictions we can make when we assume

that the metabolic state is optimized to perform a certain function.

Recommended readings

Elementary flux modes A nice paper that gives an understandable introduction of elementary flux mode

analysis and its applications: Jürgen Zanghellini, David E. Ruckerbauer, Michael Hanscho, Christian Jun-

greuthmayer (2013). Elementary fluxmodes in a nutshell: Properties, calculation and applications. Biotech-

nology Journal 8 (9), 1009. doi: doi.org/10.1002/biot.201200269

Elementary Flux Vectors were introduced as an analog of Elementary Flux Modes in the case that the

flux mode is further bound by at least one inhomogeneous constraint. A nice review of these EFVs is

can be found in: Steffen Klamt, Georg Regensburger, Matthias P Gerstl, Christian Jungreuthmayer, Stefan

Schuster, Radhakrishnan Mahadevan, Jürgen Zanghellini, and Stefan Müller (2017). From elementary flux

modes to elementary flux vectors: Metabolic pathway analysis with arbitrary linear flux constraints. PLoS

Computational Biology, 13(4):e1005409, doi: doi.org/10.1371/journal.pcbi.1005409.

Problems

Problem 4.1 A small metabolic network (1)

Spirallus insilicus, a completely fictional organism [124], is characterized by the metabolic network de-

picted in Figure 4.7X , S andP represent the biomass, one substrate and one product, whilemetabolites

https://doi.org/10.1002/biot.201200269
https://doi.org/10.1371/journal.pcbi.1005409
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Figure 4.7: Spirallus insilicus network, adapted from [123]

A to E denote intracellular metabolites. One directional arrows indicate irreversible reactions (all but v4)

1. Howmany intracellularmetabolites, intracellular reactions and transport reactions are involved in the

model?

2. Obtain the stoichiometric matrix (N) and the vector of fluxes. Howmany elements are in the product

Nv and what do they represent?

3. Is the matrix N of full rank? How many fluxes should be specified to have a unique solution?

4. Transform the set of constraints so that they define a pointed cone. Determine the number of vari-

ables (fluxes) and constraints.

Problem 4.2 A small metabolic network (2)

Consider the following small metabolic network:

Se
v0−−→ Sc

Sc
v1−−→ Pc

Pc
v2−−→ Cc

Pc
v3−−→ Dc

Pc + 2 Cc
v4−−→ X

Metabolites with a c subscript are located in the cytosol (intracellular) while e stands for extracellular

and X represent biomass. All fluxes are positive.

1. Represent the model as a reaction network (a sketch with metabolites and reactions)

2. Obtain the stoichiometric matrix (N) and list the variables of the metabolic model (v)
3. Show that there is no solution to the mass balance equation Nv = 0 producing metabolite D. Identify

why this is so and modify the model so the production of D is allowed (v3 > 0)

Problem 4.3 Elementary Flux Modes (1)

Assume reaction v4 is irreversible from A to D in Spirallus insilicus (Problem 4.1). Calculate all the Ele-

mentary Flux Modes.

1. By hand.

2. Using a software of your choice (e.g. pypi.org/project/efmtool/)

Problem 4.4 Elementary Flux Modes (2)

Consider the following metabolic network

https://pypi.org/project/efmtool/
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A B

C

D
N =


1 −2 0 0 0 0 −2
0 1 −2 1 0 0 0
0 2 0 −1 −2 0 0
0 0 1 0 1 −1 1


Please note that some stoichiometric coefficients in N are different from 1 (not shown in the graphics).

1. In the network drawing, grey dots denote carbon atoms. Check that carbon atoms are conserved in

all reactions. What’s the carbon content of the byproduct (not shown) of the reaction from A to D?

2. All metabolites are treated as internal, that is, they need to be mass-balanced. Find all EFMs (by pure

reasoning or by using a software). Determine all EFMs in which all fluxes are in forward direction,

i.e. along the “conventional directions” indicated by arrows.

3. Which of the EFMs are thermodynamically realizable? Explain why.
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Chapter 5

Optimization of metabolic fluxes

Jan Pilipp Dapprich, Daan de Groot, Felipe Scott, and David Tourigny

Chapter overview

◦ An optimization objective can be added to constraint-based models to make more specific predic-

tions.

◦ Different purposes can be served by choosing different optimization objectives and constraints

◦ The optimal solutions can be understood in terms of elementary flux modes

5.1 Can we use an optimality assumption to predict metabolic

behavior?

In the previous chapter, we characterized an organism’smetabolismby listing all the biochemical reactions

that can be catalyzed by the enzymes encoded within the organism’s genome. To understand how the

genome constrains patterns of metabolic flux we needed to make several simplifying assumptions. The

first important assumption was that intracellular metabolism is at steady-state, i.e., that the production

and consumption of all metabolites is balanced such that their concentrations are constant in time. These

resulted in themass-balance constraints on the flux vector v. The flux cone of all flux vectors satisfying the
mass-balance constraints could be further reduced by additional constraints on v, based on extra physical
and biological assumptions about themagnitude and directionality of certain reactionswithin the network.

We introduced several ways in which the entire flux space could be explored.

When applied to very large metabolic networks, the flux space will often contain an infinite number of flux

vectors v that simultaneously satisfy all constraints. From a mathematical perspective, this implies that

the constraints do not include enough information to uniquely specify a flux vector v. This makes sense

biologically, since if we imagine constraints are related to experimental observations it is very unlikely that

we will ever be able to make enough to fully account for every reaction encoded within the entire genome

of an organism (nomatter how simple it might be). Often, however, researchers dowant to further narrow

down the set of flux vectors that they think biologically relevant to the organism and conditions they are

studying, perhaps even to a unique v imagined to describe the metabolic state of an organism at a given

moment in time. One popular approach for doing so is to provide an additional assumption (or set thereof)

in the formof an objective function: it is assumed that themetabolic state of an organism is such that some

function of v (e.g. growth rate) ismaximized to satisfy some criteria (e.g. evolutionary selective advantage).

The computational problem then becomes one of constrained-optimization: find a flux vector v that is

optimal in terms of the objective function(s) that simultaneously satisfies all constraints. The resulting

75
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space of optimal flux vectors (sometimes containing just one unique vector) is often considerably smaller

than the space of those that satisfy only the constraints.

In this chapter, we will study metabolic models based on constrained-optimization. We will introduce a

selection of commonly used objective functions and the computational methods used to solve the asso-

ciated constrained-optimization problem. We will also characterize optimal solutions that we get in terms

of the minimal metabolic strategies that we identified in the previous chapter: elementary flux modes.

Finally, we will explain how we can handle the cases where the solutions are, even after optimization, not

unique.

5.2 Metabolic models based on linear optimization problems

5.2.1 Optimization problems for metabolic fluxes

In the previous chapter, we described how linear homogeneous and inhomogeneous constraints arising

frombiological and physical knowledge can be combined intomatrix and vector notation andwritten in the

general form presented in Equations (4.11) and (4.12). The resulting space of all flux vectors v satisfying

these constraints is called the flux polyhedron. The flux polyhedron can remain high-dimensional and,

as explained above, an objective function f can be used to narrow down the set of flux vectors to only

those that are optimal (i.e., maximize the objective function). The general form in which we can write the

resulting constraint-based optimization problem is therefore:

max
v

f(v), such that Av ≥ b, (5.1)

with

A =


N

−N
I
G

 , b =


0
0
0
h

 . (5.2)

Recall that Nv = 0 models the steady-state assumption, while the multiplication with the identity matrix

(In×nv ≥ 0) captures the fact that we forced all reactions to be irreversible by splitting reversible reactions
into a forward and abackward reaction. Finally,Gv ≥ h canbeused to impose additional ‘inhomogeneous’

constraints that can be used to input additional biological knowledge such as an experimentally measured

upper bound on the uptake rate of a certain nutrient.

In many cases, the objective function is chosen to be a linear function of the fluxes, i.e.,

f(v) =
∑

i

civi, (5.3)

where coefficients ci weigh the relevance of the different reaction rates in the objective function. Problems

of the form (5.1), (5.2), and (5.3) in general are called linear programming problems and as the name suggests

can be solved using linear programming. Applied to metabolic models, linear programming is called Flux

Balance Analysis (FBA). Linear programming problems are well studied, such that FBA is perhaps the most

popular approach to genome-scale metabolic models [125, 126]. FBA problems are relatively easy to solve

using specialized optimization software, which have been highly developed due to the general applicability

of linear programming in economics, logistics, and many other fields also. In the following subsections we

will briefly describe various choices that can be made for the linear objective function f(v) in FBA.

As an example FBA problem, in Figure 5.1 we have extended the minimal example from the previous

chapter to include ATP and biomass (X) production, assuming the latter is produced from pyruvate using

a single reaction that consumes sX molecules of ATP with flux value vX . We also introduce as a linear

objective function the total rate of ATP production, vAT P . Since in this example, reactions v1 and v3 pro-

duce ATP with stoichiometric coefficients s1 and s3, respectively, the total rate of ATP production is given
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XG

O2

P

P1

P2

Cell boundary

s1 ADP s1 ATP sx ATP sx ADP

s3 ATP

s3 ADP

v0

vO2

v3

v1 vx

v4v2

Figure 5.1: A simple representation of the metabolic reaction network for central carbon metabolism –
Extracellular glucose is imported into the cell via a reaction with flux v0 and converted via intracellular
glucose,G, to pyruvate, P , via the reaction with flux v1 that has a stoichiometric coefficient of two pyruvate
molecules to each glucosemolecule. Pyruvate can then either be converted to a fermentation product, P1,
via the reaction with flux v2 or, in the presence of oxygen, O2 imported via vO2 , converted to an oxidative
phosphorylation (OXPHOS) terminal product P2 via the reaction with flux v3. It can also be converted to
biomass X with rate vX . The reactions with flux values v1 and v3 produce ATP from ADP (in red) with
stoichiometry s1 and s3, respectively, which can vary between species. The production of 1.0 grams of
new cells, in a dry weight basis, requires one molecule of pyruvate and sX molecules of ATP.

by vAT P = s1v1 + s3v3 − sXvX . The FBA problem is then given by simply maximizing vAT P subject to

v0, vO2 , v1, v2, v3, v4, vX satisfying the mass-balance constraints but, as we will see in the next subsection,

this would result in a problem that is unbounded: the flux vectors and resulting optimal value of vAT P

could be indefinitely large. Biologically, this is because there are no bounds on the uptake rates of glucose

vub
0 and the fermentation product vub

4 . Thus, if we re-impose these bounds as in the last chapter, the result

is an FBA problem that is bounded and therefore has a finite objective value:

max
v

vAT P = s1v1 + s3v3 − sXvX , such that :

0 = v0 − v1,

0 = vO2 − v3,

0 = 2v1 − v2 − v3 + v4 − vX ,

vub
0 ≥ v0,

vub
4 ≥ v4,

v0, v1, v2, v3, v4 ≥ 0.

(5.4)

To illustrate a particular instance of this FBA problem, we consider the very simple case where vub
4 = 0,

vub
0 > 0 and s3 = s1 = 1. It can be checkedby hand that an optimal solution is given by v0 = v1 = v2/2 = vub

0 ,

with v2 = v4 = vX = 0. The optimal objective value is given by vAT P = 3vub
0 .

5.2.2 Types of linear objective functions used in FBA

Solving the constraint-based optimization problem of (5.1) will reduce the set of flux vectors to those that

are optimal (maximize the objective function), but the biological validity of this prediction is critically de-

pendent on the particular choice of f . Consequently, there has been a lot of consideration and debate

among researchers working on FBA about the appropriate objective functions to use in different contexts

and how best interpret the results. Below, we will provide some popular examples, but for a more sys-

tematic comparison of different objective functions we refer the reader to [130, 131, 132].
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Economics analogy 5.A Optimization and economic planning in the Soviet Union

Linear programming as an algorithmic approach to solving constrained linear optimization problems was first

developed by soviet mathematician and economist Leonid Kantorovich in the 1930s [127, 128]. Kantorovich was

taskedwith helping to optimize production in the soviet plywood industry, but soon discovered that the underlying

problems could not be solved using analytical methods. He instead developed a method for solving linear opti-

mization problems using an iterative process through which a solution is continuously improved until an optimum

is reached. Kantorovich argued that this could be used to make soviet economic planning more efficient.

Soviet planning was primarily based on material balancing, which aimed to create a consistent plan with regards

to the inputs and outputs of various industries. For example, the input requirement of steel consuming industries

ought not to exceed steel production targets. In a balanced plan the input requirements for steel wouldmatch the

production of steel. But a balanced plan is not necessarily an optimal one. There can well be several consistent

plans of which some lead to higher overall production output than others. Kantorovich observed that productive

resources were often not used where they could yield the greatest benefit. By using linear programming, plan-

ners could in principle calculate a plan that made the best use of economic resources and maximized production

output.

One of the problems that needed to be overcome by Kantorovich was that optimization always aims to optimize a

singular objective function. However, there was no obvious way of measuring the output of qualitatively distinct

products on a single scale. Without prior valuation of the products (for example through market prices) it is

not clear whether 3 tanks and 10 trucks should be counted as more than 4 tanks and 8 trucks. Kantorovich

circumvented this problem by assuming that outputs ought to be produced at given proportions. For example, it

might be specified that 2 trucks ought to be produced for every tank. Linear programming can then be used to

calculate the plan that maximizes output at these proportions. Unlike most contemporary economic applications

of linear programming, this does not depend on a monetary objective function. So, what’s being maximized is not

monetary value. Instead, the objective function measures purely physical quantities (such as number of trucks or

tons of steel).

In the context of economic planning, constraints are used to represent limits to available economic resources

(such as fertile land). A plan that uses more resources than are available will not be feasible and must thus be

excluded. Constraints can also be used to fix the proportions at which distinct outputs ought to be produced

[129]. While it was first developed for economic planning, the fundamental principles of linear programming can

also be applied to other problems (for example in biology).

Evolutionary justifications for objective functions: the rate of biomass production Objective functions

are often based on evolutionary arguments: the objective is chosen to capture some proxy for the evolu-

tionary fitness of an organism. The motivation behind this is that cells with a metabolic state that scores

well on this fitness-proxy would come to dominate the cell-population because they outgrow their com-

petitors. Proxies for fitness are in principle very hard to choose since evolutionary fitness is mostly related

to the average net reproduction rate of a cell over a very long time[133]. Therefore, to know themetabolic

objective that aligns with the maximization of fitness would require us to know what the cell has been

selected for in its evolutionary history. This is a non-trivial question, for example, is an E. coli cell growing

in the human gut selected for the same metabolic objective as a muscle cell in your body?

An objective that is used very often is the maximization of a biomass production rate, because this is used

as a proxy for maximizing growth rate. It is indeed arguable that unicellular organisms with high growth

rates are selected, since in stationary conditions these cells will come to dominate the population. Indeed,

FBAmodels inwhich the biomass production rate is optimized seem to predictmetabolic states reasonably

well [134, 135, 136].

But what exactly do we mean by “biomass”? This is extensively discussed in the Chapter 2, but for our

purposes it is sufficient to say that it is the entirety of all components that constitute a new cell. Inmetabolic

models, however, “biomass” refers to all precursors that are outputs of the model and that are needed

to produce a new cell. This has two consequences. First, biomass in our model does not only consist

of the components of which the cell is built, but also of components needed to do the building itself,

such as a certain amount of ATP. Second, what is contained in biomass will depend on where we draw
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a line around the metabolic network - all necessary cell components that are not inside are regarded as

biomass. In practice, biomass appears in metabolic networks in the form of a virtual biomass reaction that

consumes all necessary precursor molecules in the right proportions and produces one unit of “standard

biomass”. Maximizing the biomass production rate thus takes the very simple form of just maximizing the

rate through the biomass reaction.

The use of such a fixed biomass reaction represents an important assumption, because in reality the

biomass composition will be condition dependent. For example, if a cell grows faster and contains more

ribosomes, this increases the cellular fraction of proteins and polynucleotides, and hence the need for the

respective precursors (amino acids and nucleotides). Moreover, biomass composition can even depend on

the choice of metabolic strategy. If a pathway includes enzymes that contain a lot of iron, then depending

on the flux solution (which uses this pathway or not), more or less iron will be contained in the biomass.

So, the flux solutionmust be known to know the biomass composition, but the biomass compositionmust

also be known to get to a flux solution. To resolve this, we would need a model of the entire cell, including

the synthesis reactions of all enzymes. Such models will be discussed later, in the Chapter 9 on large cell

models.

Evolutionary justifications for objective functions: alternative fitness-proxies In some cases, modeling

themaximization of the instantaneous growth rate through the biomass reaction is an unrealistic proxy of

the evolutionary fitness. For example, inmulticellular organisms each cell performs a task that contributes

to the fitness of the whole organism, but this is not related to the reproduction rate of the individual cells.

In those cases, we may still try to capture an evolutionary objective when we know the main task of the

cell-type. For example, beta-cells in the pancreas have as their main task to produce insulin, and we may

thus model their metabolism by maximizing the production of insulin.

In other cases, ourmetabolic model is focused only on a very small part of the truemetabolic network, and

therefore does not model the production of all biomass precursors. In such cases, energy production rate

in the form of ATP production rate is often maximised. Yet other objective functions that are sometimes

used and have a (somewhat vague) evolutionary motivation are theminimization of overall ATP usage and

the minimization of overall fluxes.

Synthetic design-oriented objective functionsMetabolic modeling can also be used to identify metabolic

states that lead to a certain desired behavior of a microorganism. For example, wemay seek to genetically

perturb a microbe such that it produces a certain compound of industrial or medicinal interest, while it

also retains a certain minimal growth rate [137]. Indeed, it is often desired to retain a certain minimal

ability to grow such that the genetically engineered organisms can be lab-grown after which the produced

compound of interest can be harvested. In that case, we can combine maximizing the production rate

of the compound while imposing an inhomogeneous constraint that sets a lower bound on the biomass

production rate. This can even be combined with a calculation in which we solely maximize the biomass

production rate: maximizing the biomass production rate is a model for the wild-type cell, whereas max-

imizing the generation of the compound models the desired phenotype. By comparing the flux distribu-

tions between these ‘strains’, we can search for target genes that should be up- or downregulated.

5.3 Optimal metabolism in terms of elementary flux modes

In the previous chapter we introduced elementary flux modes (EFMs) and identified them as the funda-

mental metabolic pathways that carry flux through the metabolic reaction network. Here, we will show

how elementary flux modes also can be very useful for describing optimal metabolic states. We briefly

recapitulate the notion of elementary flux modes. All metabolic flux vectors v that satisfy both the mass-

balance and irreversibility constraints form a pointed polyhedral cone, called the flux cone. The EFMs are

the extreme rays of this cone, so that they can be used to decompose all steady-state flux vectors:

v =
∑

i

λiei,
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Direction of maximal fitness Direction of maximal fitness
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Direction of maximal fitness

Second
constrain
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Figure 5.2: We show a cartoon of the solution space of a metabolic network, the so-called flux cone, with
respectively (A) zero, (B) one and (C) two constraints. With one constraint, the optimal solution for any
linear objective can be attained in a vertex of the space, which means that it can be attained in a single
EFM. With two constraints, we need to combine at most two EFMs to describe the optimal solution.

where λi ≥ 0 and ei is the i-th EFM. Moreover, the EFMs turn out to be theminimalmetabolic subnetworks

that a cell can use in steady-state without needing any other reaction, so that we can view EFMs asminimal

metabolic strategies.

In Figure 5.2 we depict the EFMs as black lines, and the region in-between these lines is the steady-state

solution space that is spanned by the EFMs. Note that this illustration is great simplification, usually the

flux cone is a high-dimensional object that can only be visualized in trivial toy examples. In fact, the flux

cone is a subspace of Rn where n (the number of reactions) can be in the thousands for a typical genome-

scale metabolic network. Moreover, the number of extreme rays of the cone would be overwhelming, due

to the complexity issues associated with EFM enumeration as described in the previous chapter.

Figure 5.2a also shows that there is a direction in which the objective increases fastest. This direction is

determined by the choice of objective function, to be specific: the direction of maximal increase of the

objective is given by the vector of coefficients, [c1 · · · cn]T , appearing in the linear objective function (5.3).

However, as long as we do not impose an inhomogeneous constraint, the flux cone is unbounded, so that

we can usually reach infinite values. This makes sense when we think of the metabolic states in terms of

elementary flux modes: when we have an EFM that reaches some nonzero objective value, we can always

multiply it by any positive scalar. Thismultiplicationwill increase the objective value, while the steady-state

and irreversibility constraints will not be affected.

Metabolism, however, is never unconstrained, so we will always have at least one inhomogeneous con-

straint. In the previous chapter, inhomogeneous constraint were written in the general form∑
i

wp
i vi ≤ hp, p = 1, . . . P (5.5)

where each hp corresponds to a component of the P -dimensional vector h and nweights wp
i (i = 1, . . . , n)

are supplied for each of the P constraints. The second panel of Figure 5.2 shows how a single inhomoge-

neous constraint (i.e. the case P = 1) can constrain the flux cone and theory dictates an optimal flux vector

is found at a vertex of the resulting flux polyhedron, which geometrically corresponds to the intersection

of the flux cone and the hyperplane of the inhomogeneous constraint. One particular biological argument

for such a constraint is related to resource allocation[138, 139]: only a limited number of macromolecules

(proteins, ribosomes, etcetera) fit inside a cell. Since thesemolecules catalyze reactions, reaction rates are

proportional to their concentrations:

vi = eigi(xmetab), (5.6)

where ei is the concentration of the enzyme that catalyzes reaction i, and gi(xmetab) is a function that

describes enzyme kinetics in a non-linear way that is for most reactions unknown. The resource-allocation
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constraint then takes the form ∑
i

wiei ≤ 1, (5.7)

where wi are weights that determine how much of the resources are taken up by one unit of the ith

enzyme; these weights can for example be proportional to the volume, the mass, or the number of amino

acids of the enzyme. Making a change of variables to express the constraint in terms of fluxes gives:∑
i

wi

gi
vi ≤ 1, (5.8)

such that these resource-allocation constraints again fit the form presented in Equation (5.5). A well-

known example of a modeling framework that uses such a constraint is FBA with macromolecular crowding

(FBAwMC, [140]) where such a constraint arises due to a physical limitation on the number of enzymes

contained within the cell.

It is not necessarily always the case that an inhomogenous constraint applies to all EFMs. For example,

in a metabolic model of an organism able to grow on multiple carbon sources, many EFMs may remain

unbounded. For treatment of these cases, the reader is referred to [141]. Moreover, we may have mul-

tiple inhomogenous constraints on flux values as Equation (5.5) suggests. The third panel of Figure 5.2

illustrates how a second inhomogenous constraint can further constrain the solution space where the-

ory implies an optimal flux vector is found on a vertex lying on the edge between two EFMs (as shown

in the example in the figure). Imposing additional inhomogenous constraints can therefore lead to the

superposition of additional EFMs in the solution. In general, if we consider a constraint-based model with

K inhomogeneous constraints it can be proved that an optimal flux vector will be built out of at most K

EFMs [141]. We therefore see another important property of EFMs: not only do they form the minimal

building blocks that span all metabolic capabilities of the cell, they are also optimal building blocks. When

metabolism is optimized, only few of these EFMs are used. As a result, solutions to linear constraint-based

optimizations can usually be rationalized in terms of the properties of the available EFMs [142], for exam-

ple, a flux balance analysis with only one constraint on a nutrient uptake will just return the EFM with the

highest ‘yield’, i.e. the highest efficiency of making biomass per nutrient.

5.4 Phenotypic phase plane analysis

The analysis of the metabolic response to environmental changes is often sought assuming that there

is only one substrate limiting growth (or other metabolic reaction). For example, we could be interested

in the growth and ethanol production by S. cerevisiae under oxygen limitation in a chemostat. In this

experimental setup, every other substrate should be provided in excess, including the carbon and energy

source. If no oxygen is supplied, ATP must be produced only using oxidative phosphorylation reactions

and a fermentation product, such as ethanol, will be produced. On the other extreme, if enough oxygen

is available, a fraction of the carbon source will be completely oxidized, producing ATP via respiration. In

both cases, the fraction of the carbon and energy source not used for energy generation will be used for

the production of biomass at an specific growth rate equal to the dilution rate of the chemostat.

This behavior can be analyzed using the phenotypic phase plane analysis. To calculate a phenotypic phase

plane (PPhP), the uptake fluxes values under analysis, typically the uptakes of oxygen and the carbon

source are discretized between their upper and lower values and used to construct a meshgrid containing

the 2-D grid coordinates based on the coordinates contained in the discretized vectors of oxygen and

carbon uptake fluxes. At each tuple in the 2-D grid, an FBA problem is solved after fixing the lower and

upper bounds of the corresponding fluxes to the values in the tuple. Figure 5.3. A shows the PPhP of

the metabolic network presented in Figure 5.1 with sX = 10, s1 = 1, s3 = 4, v4 = 0, vUB
0 = 10, and

vUB
O2 = 15 mmolg−1

CDWh−1.

At zero oxygen uptake, Figure 5.3.A shows that growth is possible reaching a specific growth rate of 1h−1

at the maximum glucose uptake. Notice that the slope of the line connecting the origin of coordinates
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Figure 5.3: Phenotypic phase plane of the metabolic model shown in Figure 5.1, calculated as a function
of the uptake rates of oxygen and glucose.

and the point of the highest growth rate at a glucose uptake of 10 mmolg−1
CDWh−1 is 0.1 gCDW(mmol)−1.

Biologically, this slope corresponds to the biomass yield on glucose under anaerobic conditions, and in

terms of linear programming to the negative of the shadow price defined as:

γi = −dz
dbv

i

, (5.9)

where z is the objective function optimal value (specific growth rate in this case) and bv
i corresponds to

the violation of a mass balance constraint and is equivalent to the uptake reaction of the i-th metabolite

(glucose in this example)[143]. Figure 5.3.C shows that the glucose shadow price is equal to -0.1 at every

point in the feasible region of the problem. Figure 5.3.D shows the shadow price values for oxygen uptake.

For every unit increase in the oxygen uptake flux, the biomass specific growth rate increases by 0.4 h−1.

Thus, the plane of increasing growth rate values in Figure 5.3.A can be described by the equation 0.1vG +
0.4vO2 . Concomitantly, as the oxygen uptake increases, the flux of product P1 decreases as more ATP is

generated in reaction v3. For every constant glucose uptake flux, the specific growth rate increases and the

production of P1 decreases until the optimally line (red line) is reached in Figure 5.3.A. This line represents

the optimal relation between the twometabolic fluxes in the PhPP [143]. In this example, the optimally line

represents the combinations of glucose and oxygen uptake fluxes leading to a complete oxidation of the

substrate, and thus supporting the maximal biomass yield. Finally, increasing the oxygen consumption

beyond the optimally line, at a constant glucose uptake, leads to an infeasible problem since there is no

further glucose to be oxidized.

5.5 Non-uniqueness of the optimal metabolic state

5.5.1 Reasons for non-uniqueness

Although the optimization of some objective function strongly reduces the number of solutions, it is still

possible that many different metabolic states satisfy the constraints and reach the same maximal value

for the objective. In that case, we are again undecided on which of the solutions gives the most useful
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information about the biological problem. This non-uniqueness of the optimum can be explained in terms

of the elementary flux modes. In the second panel of Figure 5.2 we saw that the optimal solution was

located on the vertex that was as far as possible in the optimization direction. One can imagine, however,

that the flux cone can be located in the space such that there are two vertices that both reach out equally

far into that direction. In that case, the two corresponding elementary flux modes perform equally well,

and consequently, all convex combinations of these elementary flux modes also reach the same objective

value. In metabolic modeling we often work in a high-dimensional space with constraints that concern

only few of those dimensions (for example a bound only on a nutrient uptake rate). In such cases it is

very likely that many elementary flux modes perform equally well, so that there is a whole subspace of

equivalent solutions.

5.5.2 Flux Variability Analysis

The equality and inequality constraints of the FBA problem form a polytope where the problem is feasible,

a cone if the problem is written in canonical form. The optimal solutions of the LP problem can lay on a

vertex of the polytope, and be unique, or be non-unique solutions if the objective function hyperplane is

parallel to a facet of the constraint polytope at the solution. This means that one or several variables can

change their values without affecting the value of the objective function. These variables can be identified

using flux variability analysis (FVA), where each flux of the reactions in the metabolic network (the set of

J reactions with N elements and I metabolites) maximized and minimized, one at a time, while fixing the

value of the objective function to a fraction of the optimal value obtained in the original FBA problem.

max
v

vj(ormin
v
vj), such that :∑

j∈J

Si,jvj = 0, ∀i ∈ I,

LBj ≤ vj ≤ UBj ,

vbiomass = f · v∗
biomass,

vj ∈ R, ∀j ∈ J.

(5.10)

Hence, 2N optimization problems need to be solved if there areN unconstrained fluxes. The results of the

VFA analysis should be carefully interpreted. Since the maximum and minimum fluxes are calculated one

at a time, and although changes in this flux might not affect the objective function, this typically requires

changes in the remaining fluxes. Therefore, the polytope that describes all alternate optimal solutions

is not captured by VFA. Instead, FVA inscribes this polytope in the smallest possible “box” [144]. Besides

being useful for the identification of alternative solutions, FVA can be utilized to identify blocked reactions

under a given growth condition. These reactions are characterized byminimum andmaximum flux values

(as calculated by VFA) equal to zero and arise due to regulatory constraints imposed to the FBA or due to

network gaps, for example,metabolites lacking a consumption or production pathways forwhoma steady-

state mass balance is impossible. Thus VFA, could help in the identification of dead-end metabolites, and

in the long run, in model improvement.

5.6 Limitations of constraint-based metabolic models

In this and the previous chapter, we have introduced constraint-based analysis of genome-scalemetabolic

models. We started by pointing outmany of the simplifying assumptions that are associatedwith the study

of large metabolic reaction networks. For example, we only considered systems in chemical steady state

with their environment, we ignored the effects ofmetabolite dilution, andwemade semi-informed choices

for which intracellular molecules are contained in our model or summarized in a biomass reaction. All

these assumptions can be relaxed, at the cost of making models more complex. Although it is tempting to

think that themore complex amodel themore realistic it will be, there is notmuch use to adding additional
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complexity if we don’t have the data to support it. Constraint-based analysis therefore provides one way

to study metabolism at genome-scale when data are limited. In the following chapters we will study the

consequences of lifting one or more of these simplifying assumptions.

In constraint-based analysis, one considers reaction rates (fluxes) as the variables in the model, giving the

illusion that these are directly set by the cell to regulate itsmetabolic state. In reality, however, the reaction

fluxes are the combined consequences of enzyme expression, regulation and metabolite concentrations.

If we wish to model metabolism in more detail, we we should build models that incorporate gene expres-

sion and metabolite concentrations systematically. Some of the next chapters attempt this, but we have

described that FBA is useful when experimental data are limited. Certain extensions of FBA discussed in

later chapters also move beyond the steady state assumption, allowing the environment to change with

time. One example is the method dynamic FBA, which will also be discussed in a later chapter.

Philosophical remark 5.B Qualities of a model

When have we made a good model? Is the quality of a model determined by whether it fits all experimental

observations? What is the ideal size of a model? Is the purpose of a model that it predicts, or rather that it

provides insight into the biological processes?

The answers to these questions are as common as it is unsatisfying: ‘it depends’. Sometimes a model can be very

useful if it just predicts, and does not explain, as witnessed by the undebatable success that machine learning

models have across the sciences. However, only true understanding of the studied process can lead to hypotheses

and predictions on phenomena that are far away from the currently available data. The more a model is fitted to

a specific dataset, the less we are able to extrapolate it beyond this dataset.

These questions are very relevant in the context of metabolic modeling. Metabolic models have many unknown

parameters, stemming from our ignorance of the biological process: What is the true objective? What constraints

are relevant for determining metabolism? It is a deceptive trap to view the success of the model in reproducing

the observed data as a validation that the right parameters, objective and constraints were chosen. A successful

model only indicates that themodeledmechanism can be similar to the true biological mechanism, but it does not

show it actually is. The problem is that, since we have many different parameters to choose from, many different

models can explain the same metabolic observations [145].

An especially important question is whether metabolism is truly optimized for some evolutionary function. It is

now an attractive option to view the success of optimization-based models as proof that the cells are indeed opti-

mized, but this would bewrong becausewe can also explain the datawithmodels that do not require optimization.

To really quantify whether metabolism is optimized we should therefore devise quantitative tests that distinguish

between randomly chosen and optimized metabolic states. An interesting approach for describing the metabolic

outcome of cells, relying on statistical mechanics rather than on a selected objective function, has already been

introduced [146].

5.7 Concluding remarks

In this chapterwebuilt upon the exploration of flux spaces derived from constraints by imposing optimality

criteria in terms of an objective function. The choice of the objective function(s) and the constraints depend

on the modeling purpose. We will summarize some of the possible choices by listing three purposes that

this type of models can have.

First, constraint-basedoptimization canbeused to collect, integrate and extrapolate data on themetabolism

of a specific organism. In this case, as much experimental information as possible can be used to refine

the model. For example, measured fluxes can be fixed with constraints, measured metabolite concentra-

tions can be used to determine the thermodynamically feasible direction of reactions, and transcriptome

information can be used to exclude some reactions because the corresponding genes are not expressed.

One of the applications is then that unknown variables can be inferred such that they are in accordance

with the metabolic network and all the measured variables.

Second, hypotheses can be tested on why the studied organism attains its metabolic state. By choosing
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an objective function we can propose what drives the metabolic behavior and by choosing the constraints

we propose what limits the metabolic behavior. If the model is then in accordance with the experimental

observations, we know that at least the hypotheses were not proven wrong. On the other hand, we must

be careful not to conclude from this that the hypotheses must be right, as we discussed in the box with

philosophical remarks.

Third, we may use these models to search for a metabolic state that results in a certain desired behavior,

for example in the secretion of a product that is useful for industrial or medicinal reasons. In this case, the

objective function is picked such that exactly the desired behavior is maximized, often while requiring that

some biomass production is still possible because the cells need to be able to grow before the harvesting

of the product can start.

Despite these useful purposes, we have also identified several limitations of the FBA-type models that

we described here, such as ignoring metabolite concentrations, enzyme kinetics, and the assumption of

a stationary metabolic state. The reason that these models are still very popular is their computational

simplicity: as long as the objective function and constraints are linear in the reaction rates, the optimal

solution is relatively easy to find using linear programming. This makes it feasible to make and run these

models on genome-scalemetabolic networks, which are networks that comprise all themetabolic enzymes

for which the genome encodes, and can include thousands of reactions.

Understanding the solutions of such large models can also be very difficult due to their dimensionality.

This is made easier when one uses elementary flux modes: we have seen that a solution is always a

combination of a relatively small number of EFMs. More precisely, the number of EFMs that are active in

the optimal solution cannot exceed the number of imposed constraints. This means that to understand

the solution, we only need to understand which EFMs are selected and why. As such, we can interpret

optimal solutions in terms of the EFMs, i.e. the minimal metabolic strategies, that are used.

Recommended readings and tools

Escher FBA Escher FBA (https://sbrg.github.io/escher-fba/) is a nicely illustrative tool for FBA on an

E. coli core model. Bounds on all reactions can be changed and different objectives can be explored. The

resulting flux distribution is shown graphically.

Problems

Problem 5.1 Flux distribution with constraint

Augment the metabolic network of Spirallus insilicus (Problem 4.1) by adding the in-homogeneous con-

straint vupt ≤ 10 mmol
gDWh and calculate the flux distribution if biomass is the objective function (maximize

v5).

1. Using a spreadsheet and its associated linear programming optimizer.

2. Using an LP solver in Python such as linprog available in scipy.optimize.

3. Is the flux distribution unique? Calculate the maximum and minimum values of each flux (except for

the uptake of substrate and biomass production) if v5 should be equal to its optimal value (v∗
5 ) and if

this constraint is relaxed to v5 ≥ 0.9 v∗
5 .

Problem 5.2 Choice between phenotypes

Themetabolic network illustrated in Figure 5.1, adapted from [143], was designed to include four pheno-

types that can be reached depending on the ratios of the oxygen and carbon source (A) uptake, defining

zones of single nutrient and dual nutrient limitation.

1. If the uptake of the carbon source A is bounded between 0 and 10 mmol
gDWh and no restrictions on

the oxygen uptake are imposed, prepare a plot showing the biomass, C, D and E fluxes attained at

different uptakes of A.

https://sbrg.github.io/escher-fba/
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qA−−→ A ATP Rft−−→
A + ATP R1−−→ B C + 10 ATP Rz−−→ Biomass
B R2−−→ 2 ATP + 3 NADH + C

qO2−−→ O2

0.2 C R3−−→ 2 NADH C Cout−−−→
C R4−−→ ATP + 3 D D Dout−−−→
C + 2 NADH R5−−→ 3 E E Eout−−−→
NADH + O2

RRes−−−→ 2 ATP

Table 5.1: Stoichiometry of the metabolic network for problem 5.2. Adapted from [147] after [143].

2. Repeat the preceding analysis, but limit the maximum uptake rate of oxygen to 10 mmol
gDWh .

3. If substrates uptakes are bounded between 0 and 10 mmol
gDWh for A and 0 and 20 mmol

gDWh for oxygen,

calculate the phenotype phase plane. In each region of the phase plane (defined by a different slope),

pick a combination of A and oxygen uptakes and analyze the fluxes of C, D and E.



Chapter 6

The enzyme cost of metabolic fluxes

Wolfram Liebermeister and Elad Noor

Chapter overview

◦ In this chapter we discuss why certain pathway designs have been selected by evolution, by hy-

pothesizing that some are more beneficial than others – based on several possible criteria and

optimization goals: minimizing the number of reactions, maximizing product yield, increasing re-

action turnover rates, and avoiding small thermodynamic driving forces.

◦ It turns out that all these criteria are related to a single objective: minimizing enzyme demand per

product production rate or, equivalently, maximizing “enzyme productivity”.

◦ We first focus on simple unbranched pathways with predefined flux distributions. We discuss sev-

eral feasibility and optimality problems where metabolite concentrations are independent vari-

ables and solve for the minimal enzyme demand. In this setting, we see how enzyme productivity

can be assessed or predicted and how it depends on different system parameters such as kinetics,

thermodynamics, and concentrations of enzymes and metabolites.

◦ We discuss the difference between growth rate and yield. We then illustrate it by comparing be-

tween pathway options for glycolysis.

6.1 What guides evolution to select one pathway over another?

In the previous chapters, we asked what flux distributions are possible in a network, and which are most

profitable for a certain task. Now we shall ask, more specifically, what led to the choice of existing path-

ways, or what makes a pathway variant favorable over another one that exists, or may have existed, in

evolution. Of course, the same question plays also an important role in metabolic engineering, when

new pathways are added to an organism, typically with the goal of achieving a maximal production, while

imposing the smallest possible burden on the cell.

The chemical space is vast andmany options exist for the same process, even if we consider only reactions

with known enzyme mechanisms and impose thermodynamic constraints. Hence, while evolution had a

choice between many pathway variants, only a tiny fraction of these possible variants is actually realized

in nature, and a core part of central metabolism almost always follows the exact same design. The few

exceptions that exist actually prove the rule, such the two natural variants of glycolysis discussed later in

this chapter. How can we understand why a certain variant is used in a certain organism or situation?

And why are many variants not used at all? Moreover, some very successful pathways show features that

might appear strange at first glance [148]: in glycolysis, an initial investment of ATP is required, and only

later it is recovered in higher amounts leading to a net gain. Is this just an evolutionary accident, i.e. a

87
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Philosophical remark 6.A What do we mean by a ”pathway”?

The notion of “pathways” is common in cell biology to describe a set of reactions, proteins, or processes that form a

functional unit. However, there is no general definition: in practice, a pathway is often just a subregion of interest

within a larger network. In metabolism, “pathways” often lead from some important substrate to some important

product, with a simple and predefined flux distribution that consumes substrate(s), generates product(s), andmay

or may not make use of co-factors. Considering fluxes in specific pathways (instead of flux distributions in the

entire network) is often a practical choice and, importantly, a choice that assumes that we canmodel, understand,

manipulate, or engineer such a pathway without strongly affecting the rest of the cell. This has a number of

benefits: (i) Instead of studying a huge network, we can look at pathways separately; (ii) there are reasons to

believe that the fluxdistributions in enzyme-efficientmetabolic statesmust be elementary fluxmodes (seeChapter

4). Since EFMsoften entail discrete choices betweendifferent pathways, it canmake sense to study these pathways

separately (iii) once we understand the costs and benefits of single pathways (with a single, scalable fluxmode), we

can apply the same thinking to analysing flux distribution on the entiremetabolic network. Thus, in the rest of this

chapter, all results about “pathways” will also hold generally for entire networks, as long as a (scalable) flux mode

is given. Instead of comparing alternative pathways, we can compare alternative flux modes. In the following

chapter, we use this for optimizing over the set of all possible flux modes that a given network can support.

case where the pathway that evolved first is the one that stuck around although it is not necessarily better

than all the alternatives? Or, rather, evolution did manage to find the optimal solution and therefore we

should try to explain what the advantages of these “engineered” features are?

In this chapter, we assume that it was a selection for functional features, not chance, that determined

these pathway “choices”, and ask: what guides evolution to select one pathway over another? What are

the criteria that make pathways “efficient” or “profitable” for a cell or, alternatively, for a metabolic engi-

neer? To compare pathways, we assume that each pathway comes with a predefined flux distribution, and

therefore a predefined product yield, and alternative pathways (yielding the same product) are compared

at equal product production rates.

When people talk about natural ecosystems, diversity is usually the first topic discussed. Indeed, evolution

through natural selection is almost guaranteed to create diversity where species evolve to occupy biolog-

ical niches while exploring the vast space of possible phenotypes. Similarly, the world of biochemistry is a

vast space of possible reactions. Metabolic enzymes participate in a network of pathways that supply cells

with energy, and building blocks for biomass. Scientists have been studying these biochemical reactions

for nearly 300 years [149] – so far tens of thousands such reactions have been classified; certainly many

more exist in nature. Here are a few online databases where biochemical reaction data are collected or

predicted: MetaNetX, KEGG, MetaCyc, BiGG, ModelSEED, ATLAS of biochemistry.

To study the choice between pathways variants, we consider alternative pathways leading from A to B (or

having a certain net sum formula) and their respective advantages and disadvantages. For simplicity, let

us focus on biosynthesis pathways whosemain task is more or less clear: producing a precursormolecule.

Thus, the theoretical question would be: if a cell needs to make B from A, which pathway should it use?

More specifically, how should the metabolic reactions be chosen and in what order? What should their

kinetics and how should they be regulated?

If the pathway variant found in nature is due to selection for “good functioning”, thenwhat are the features

that make existing pathway designs successful? In short, what are criteria for “good” pathways? One pos-

sible criterion seems to be simplicity, that is, choosing a short route from pathway substrate and pathway

product.

In contrast to the huge diversity that is allowed by the catalytic capabilities of enzymes, a few metabolic

pathways are extremely ubiquitous and exist virtually in every living cell. For example, glycolysis is a gen-

eral term for pathways that convert glucose to pyruvate while producing ATP [148]. One variant of glycol-

ysis, named after Gustav Embden, Otto Fritz Meyerhof, and Karol Parnas (or the EMP pathway for short,

https://www.metanetx.org/
https://www.kegg.jp/
https://metacyc.org/
http://bigg.ucsd.edu/
https://modelseed.org/
https://lcsb-databases.epfl.ch/pathways/atlas/
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Figure 6.1: Two natural variants of the glycolysis pathway, named after their discoverers: Embden-
Meyerhof-Parnas (EMP) and Entner-Doudoroff (ED)

see Figure 6.1), was the first metabolic pathway to be discovered by scientists [149]. Often, the pyruvate

is reduced to lactate or ethanol, which makes the pathway redox balanced. Therefore, it one of the most

common way for producing ATP anaerobically (i.e. without oxygen to serve as an electron acceptor). An-

other common variant was discovered in 1952 by Nathan Entner and Michael Doudoroff [150] (ED for

short). For example, E. coli is capable of metabolizing glucose through both the EMP or the ED variants,

and often does so simultaneously [93].

More generally, the overall reaction describing glycolysis is:

Glucose + 2 NAD(P)+ + nADP + nPhosphate −−→ 2 Pyruvate + 2 NAD(P)H + nATP + nH2O (6.1)

where the value of n for the EMP pathway is 2. Ng et al. [151] explored the space of all possible glycolyses

(with different values of n), by exhaustively enumerating all glycolytic pathway variants. In order to gener-

ate the variants, they adapted a computational method first introduced by Bar-Even et al. [152] for finding

alternative carbon fixation cycles – metabolic cycles whose net reaction converts CO2 into organic com-

pounds. You start by collecting a database of known biochemical reactions (e.g. from a database such as

KEGG [153]) and then use a linear-programming algorithm to identify the set of reactions with theminimal

sum of fluxes that conform to the predefined net reaction (e.g. 6.1). The objective is somewhat arbitrary,

but since solving the LP requires setting an objective, we chose the min-flux as a reasonable proxy for the

simplicity of the pathway. In any case, we will soon see how one can iterate through all possible solutions.

Ng et al. [151] used this algorithm with the stoichiometry from 6.1 to find all possible glycolysis pathways

comprising known enzymatic reactions (see Box 6.B).

The objective set by the linear problem (6.2) is minimizing the sum of fluxes, which corresponds to path-

ways with fewer reactions and low fluxes in each one. As discussed in 5.2, this objective is only a crude

proxy for the efficiency of a pathway, and its only purpose is to get the pathway solutions in a relatively

logical order. Although we have discussed global enzyme constraints in previous chapters (such as molec-

ular crowding and proteome allocation), when comparing pathways we will focus only on the efficiency of

the pathway itself. This will allow us to compare pathways without thinking about the rest of the cell or a
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Math box 6.B Integer cuts for iterating all possible pathway variants

The linear problem can be described by:

minimize
∑

i

vi

subject to Nv = 0

∀i 0 ≤ vi ≤ β

vglycolysis = −1

(6.2)

wherev is the flux variable, andN is comprised of the universal stoichiometricmatrix , and in addition one reaction

(whose flux is denoted vglycolysis) which has the stoichiometry of Eq. (6.1). The constraint vglycolysis = −1 ensures

that the sum of all active reactions except for vglycolysis will together form a full glycolysis pathway, since their net

reaction has to balance the stoichiometry of vglycolysis given the mass balance constraint Nv = 0. β given the

upper bound on the flux for all reactions. For simplicity, we assume that all fluxes are positive and that reversible

reactions are split into their two opposing directionalities . β is a tunable parameter that is an upper bound on

all the fluxes in the solution pathways. Setting it too low would exclude solutions with complex stoichiometries.

On the other hand, a very high value would increase the complexity of the search and lead to very long run-times.

Typically, we choose β = 10 which is a good balance between the two extremes. Finally, we set the objective

function (
∑

i
vi) to minimize the sum of fluxes. As we will explain shortly, we can iterate through all possible

solutions and therefore the objective will only determine the order at which we find them.

To find all possible glycolysis pathways comprising knownenzymatic reactions, Ng et al. [151] iteratively introduced

constraints in order to exclude all previous solutions and find the next optimal one [154]: to exclude a solution,

they add an integer cut, which is an inequality constraint ensuring that the number of active reactions is strictly

larger than the sum over their indicator variables (boolean variables that are equal to 1 if the reaction is active, i.e.

carries a nonzero flux). Therefore, at least one of those reactions must be inactive in all future solutions. This is

quite similar to constrained Minimal Cut Sets (cMCS) which were introduced in Chapter 4.4 as a way of exploring

the flux space.

Formally, if {P0, P1 . . . Pm} are the set of solutions already discovered by our algorithm (where ∀j Pj ⊆ {0, . . . , n},
i.e. each solution is a set of integers which correspond to indices of active reactions) then the added constraints

will be:

∀i zi ∈ {0, 1}

∀i vi − βzi ≤ 0

∀j
∑
i∈Pj

zi < ‖Pj‖
(6.3)

where ‖Pj‖ is the length of pathway j (i.e. the number of reactions). The zi are boolean reaction indicators, i.e. zi

must be equal to 1 if a reaction is active (vi > 0). The final set of constrains eliminatePj and any pathwaywhich is a

superset of Pj from the solution space. Using this extra set of constraints iteratively, each time generating the next

pathway and adding it to the excluded list, will eventually go through all possible solutions (by increasing order of

their sum of fluxes). It is important to note that using integer cuts requires switching to an MILP (Mixed-Integer

Linear Program) solver, which is computationally much more demanding and typically requires a commercial

license.

specific metabolic context. But how can one quantify the efficiency of a pathway? The next section will be

dedicated to exactly this question.

6.2 Pathway efficiency - some notions and thoughts

For glycolysis alone, Ng et al. [151] found 11,916 alternatives that produce at least one mole of ATP per

mole of glucose. These include, of course, the EMPpathway. Although evolution can explore these options,

natural selection typically converges on one or a few efficient variants. This does not mean that every

single pathway observed in nature must be optimal, but we generally expect cells hosting highly inef-

ficient pathways to eventually become extinct. Iacometti et al. [155] tested this experimentally by knocking
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out the EMP pathway from E. coli and forcing the cells to use the alternatives that naturally exist in this

bacterium. In all cases, growth rates were slower than in the wild-type.

Beforewediscuss other examples formetabolic pathways, weneed to definewhatwemeanby “efficiency”.

There are several criteria one should consider:

◦ Low consumption rate of the substrate

◦ High generation rate of the product

◦ High regeneration rate or low consumption rate of the co-factor

◦ Small number of steps [156]

◦ Higher thermodynamic forces [157, 158]

◦ High enzyme turnover numbers

◦ High enzyme saturation levels

Some of these criteria refer to the cost (or investment) of the pathway, while others reflect the benefit (or

profit) to the cell. By considering two common scenarios – single nutrient limitation or exponential growth

in rich media – we can focus on two simple criteria which provide good measures of efficiency.

When the availability of a single nutrient is limiting growth, maximizing the molar yield (i.e. the number of

moles of product generated for each mole of the nutrient) becomes the important feature. Yield is rather

straightforward to calculate, as it is a direct outcome of the stoichiometry of the pathway. For example,

anaerobic fermentation is often compared to respiration and deemed inefficient since it yields two moles

of ATP per glucose, instead of ≈30 [159].

On the other hand, when conditions are good, such as during exponential growth in richmedia, minimizing

the total number of proteins required is often the objective which determines growth rate. . Here, we will

be using the enzyme demand (e.g. in grams of protein) per unit of flux (typically, in mmol per hour per

gram of cell dry weight). In fact, the enzyme demand per flux, as an objective, takes into consideration

both the cost (protein) and the benefit (flux). Importantly, these two criteria scale linearly with respect to

each other: doubling the amount of all enzymes without changing any of the metabolite concentrations

would directly double the flux in the pathway. Therefore, this measure of efficiency is independent of the

magnitude of the flux in the pathway. But, as we will see shortly, enzyme demand is a non-linear function,

making it trickier to compute compared to other constraint-based problems such as ones we’ve seen in

previous chapters.

Notably, these two measures of efficiency are not only useful for evolutionary processes, but for bioengi-

neering as well. Obviously, the molar yield has economical implications when, for example, producing

ethanol from sugar. However, the rate of a bioprocess is important as well due to the costs involved, e.g.

for maintaining an operational bioreactor. One can imagine a computational model that accurately pre-

dicts the enzyme demand per flux of a pathway. Choosing the pathways with the lowest demand would

be a good strategy for increasing the overall rate of bioproduction [160].

We define the enzyme demand per unit flux as the total amount of enzyme (in grams of protein) that is

required to catalyze all of the pathway reactions at their required rates. We start by deriving a formula for

the demand of a single enzymatic reaction. Consider an enzyme-catalyzed reaction:

S −−⇀↽−− P (6.4)

where s and p will be the concentrations of the substrate (S) and product (P) respectively, and E the con-

centration of the enzyme which catalyzes this reaction (for simplicity, we drop the tot subscript from Etot).

Here, we will be using the factorized rate law (Eq. 3.10), but other kinetic rate laws would produce similar

results. The rate of a reaction is given by:

v = e · k+
cat · s/KS

1 + p/KP + s/KS
·
(

1 − e∆rG′/RT
)

(6.5)
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Figure 6.2: Enzyme cost in metabolism – (A) Enzyme-specific flux depends on a number of physical factors.
Under ideal conditions, an enzymemolecule catalyses its reaction at a maximal rate given by the enzyme’s
forward catalytic constant (blue). The rate is reduced by microscopic reverse fluxes (magenta) and by
incomplete saturation with substrate, causing waiting times between reaction events, or by enzyme inhi-
bition or incomplete activation (red). (B-C) On a logarithmic scale, catalytic rates and enzyme demand can
be split into sums of efficiency terms. With lower catalytic rates, larger amounts of enzyme are required
for realizing the same metabolic flux.

where k+
cat is the forward turnover rate, Ks and Kp are the Michaelis-Menten constants for the S and

product P, and ∆rG
′ is the Gibbs free energy. So, the minimal amount of enzyme that is required for

reaching a given rate v is:

q ≡ v · h · 1
k+

cat
· 1 + p/KP + s/KS

s/KS
·
(

1 − e∆rG′/RT
)−1

, (6.6)

where h is a number converting enzyme concentration e into enzyme amount q (for example, the enzyme

molecular mass). For an illustration, see Figure 6.2 . Summing up the demand across all the reactions

in the pathway (each with its own rate, kinetic parameters, and substrate/product concentrations) will

produce the total enzyme demand. Looking at this function, we can already make some interesting ob-

servations. First, the kinetic parameters (k+
cat, Kp, and Ks) can be treated as constants since they change

only in evolutionary timescales, and we often assume that existing enzymes already have near-optimal

kinetics (although that’s not always the case). Since we care about the demand per pathway flux one can,

without loss of generality, set v to 1. However, if the pathway requires a non-trivial ratio between some

reactions, the value of v can be different based on the stoichiometry. Finally, the thermodynamic term,

i.e. 1 − e∆rG′/RT (which we will discuss in more detail in the following section, 6.3), is a function of the

metabolite concentrations and the Keq, which is another constant. So, generally speaking, enzyme de-

mand is defined by a set of constants that are unique to each pathway, and variables that represent the

metabolite concentrations. Since these concentrations are subject to change depending on the growth

conditions, we often treat them as optimization variables and try to find the minimal demand possible

within certain constraints. In Section 6.4, we will see a general method for finding the minimal value using

convex optimization.

Most of the proposed criteria for good pathways have either to do with material investments (such as

substrate, cofactor, or energy demand) or with “machine investments”, that is, enzyme demands. Enzyme

demands, in turn, depend on pathway length, enzyme masses, and enzyme efficiency, and therefore on

rate laws (where kcat values, thermodynamic forces, and metabolite concentrations come into play). In

fact, many criteria which we discussed earlier as indicators of efficiency are actually an approximation of

the enzyme demand under certain assumptions. For example, the number of steps is proportional to the

total demand if all enzymes have exactly the same k+
cat, saturation, and thermodynamics. Therefore, it
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Math box 6.C Factorized rate laws and enzyme cost function

According to Eq. (6.13), reversible rate laws can be factorized into five terms that depend on metabolite concen-

trations in different ways [82]. For a reaction S 
 P with reversible Michaelis-Menten kinetics Eq. (6.11), a driving

force θ = −∆rG′/RT , and a prefactor for non-competitive inhibition, the rate law can be written as

v = E · k+
cat · [1 − e−θ]︸ ︷︷ ︸

ηfor

·
s/KS

1 + s/KS + p/KP︸ ︷︷ ︸
ηsat

·
1

1 + x/KI︸ ︷︷ ︸
ηreg

Rate = enzyme · forward catalytic · thermodynamic · saturation · regulation

level constant factor factor factor

with inhibitor concentration x. The product of the first two terms, E and k+
cat, represents the maximal velocity, i.e.

the rate at full substrate-saturation without backward flux and without enzyme inhibition. The following factors

decrease this velocity for different reasons: ηfor describes a decrease due to backward fluxes, ηsat – the decrease

due to incomplete substrate saturation, and ηreg – the decrease due to small-molecule regulation (see Figure b).

While k+
cat is an enzyme-specific constant (yet, dependent on conditions such as pH, ionic strength, or molecular

crowding in cells), the efficiency factors are concentration-dependent, unitless, and can vary between 0 and 1. The

thermodynamic factor ηfor depends on the driving force (and thus, indirectly, on metabolite concentrations), and

the equilibrium constant is required for its calculation. The saturation factor ηsat depends directly on metabolite

levels and contains the KM values as parameters. Enzyme regulation by small molecules yields additive or multi-

plicative terms in the rate law denominator, which in our example and can be captured by a separate factor ηreg.

The enzyme cost for a flux v, with an enzyme burden he, can be written as

q = he · E = he · v ·
1

k+
cat

·
1

[1 − e−θ]︸ ︷︷ ︸
1/ηfor

·
1 + s/KS + p/KP

s/KS︸ ︷︷ ︸
1/ηsat

· [1 + x/KI]︸ ︷︷ ︸
1/ηreg

and contains the terms from the rate law in inverse form. The first factors, he v/k+
cat, define a minimum enzyme

cost, which is then increased by the following efficiency factors. By omitting some of these factors, one can con-

struct simplified enzyme cost functions with higher specific rates, or lower enzyme demands (compare Figure

6.2b). For a closer approximation, the factors may be substituted with constant numbers between 0 and 1.

is quite a useful rule-of-thumb in case not much else is known about the enzymes themselves. A better

approximation, denoted Pathway Specific Activity, was used by [152] to compare CO2 fixation cycles. If we

assume that all enzymes are fully saturated and irreversible, the demand would be a direct function of

the individual enzyme specific activities (specifically, proportional to the sum of all their reciprocal values).

But even if we know nothing about the enzyme kinetic parameters, thermodynamics alone can provide

us with useful information with which to grade pathways. Specifically, the Keq of a reaction is a universal

constant that is not affected by enzymes, but rather determined solely by the chemical structures of the

substrates and products.

In the following sections, we will focus on enzyme use efficiency as a main objective and consider a ther-

modynamic approximation, relating enzyme demands to thermodynamic forces. For linear metabolic

pathways, optimal enzyme profiles (and the associatedmetabolite profiles and enzyme costs) can be com-

puted with closed formulae. We will also discuss a way to compute optimal enzyme profiles numerically,

for networks of any shape and size, as long as the flux mode is known.

6.3 The role of thermodynamics

In general, when considering larger metabolic networks, thermodynamic feasibility can play an important

or even crucial role in determining which pathways are used. In this section we will discuss this role more

explicitly and see how thermodynamics can still give us useful insights about pathway efficiency evenwhen

no other kinetic data is available.
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Why are thermodynamic driving forces a meaningful criterion for good pathways? In brief, the driving

forces, defined as θ ≡ −∆rG
′/RT , play a double role: first, they determinewhether or not a pathway flux is

feasible at all, given themetabolite concentrations at the pathway boundary (i.e. themetabolites that form

connections to the broader metabolic network); and second, in case the pathway is feasible, driving forces

can affect enzyme efficiency and, consequently, the enzyme demand for a given desired pathway flux. In

Chapter 3, we learned that ∆rG
′, and hence the driving force θ, depends on the equilibrium constantKeq

of the reaction and on the substrate and product concentrations. We also learned that for a flux in forward

direction, the driving force must be positive. Beyond that, the efficiency of an enzyme is proportional to

ηfor(θ) = 1 − e−θ , a function that ranges between 0 (for θ = 0, reactions in thermodynamic equilibrium)

and 1 (θ � 1, reactions far from equilibrium). Let us now see how this non-equilibrium relation affects

pathway efficiency.

6.3.1 Enzyme kinetics and driving forces

We should remind ourselves some of the lessons learned in Chapter 3. Specifically, recall the factorized

rate law [82] with a reversibility term that is an explicit function of the Gibbs energy (Eq. 3.10):

v = e · k+
cat ·

∏
i
sνi

i /Ks

1 +
∏

j
p

νj

j /Kp +
∏

i
sνi

i /Ks

· (1 − e∆rG′/RT ) . (6.7)

The enzyme mechanism behind this formula assumes fast binding and unbinding of substrate and prod-

uct, and a slow reversible conversion step (of bound substrate into bound product). Note that here we

generalize the rate law for cases with more than one substrate and one product, where νi and νj are

the stoichiometric coefficients of substrates and products, respectively1. This generalization is one out of

many, and corresponds to the assumption that all reactants bind independently to the enzyme (and at

random order). We focus on this rate law because it is one of the simplest, but the theoretical results in

this chapter apply to most other generalizations as well (e.g. convenience kinetics [161]).

According to the definition of k+
cat, and also by noticing that the middle and rightmost terms in Eq. (6.7)

are each smaller than 1, the rate of an enzymatic reaction is bounded by v ≤ e · k+
cat (see Mathematical

Details Box 6.C for a detailed explanation). However, the additional terms are often much lower than 1,
which means that the rate does not reach its maximum. If we try to measure the apparent catalytic rate

by dividing the rate by the enzyme abundance (kapp = v/E) we would typically get a value that is lower

than k+
cat, while only in rare “ideal” cases, kapp would approach the k

+
cat. In fact, this reasoning was used by

Davidi et al. [24] to estimate the k+
cat values of more than 100 enzymes in E. coli, where they sampled many

growth conditions and took the maximum kapp as the estimate.

As discussed in Section 3.2.3, the factorized rate law has a thermodynamic perspective based on the flux-

force relationship, where we view the reversibility term as a “penalty” for the fact that by lowering the

energy barrier, enzymes must catalyze reactions in both directions. When the driving force (θ) is low, the

reverse reaction flux can become significant and lower the net flux. On the other hand, if the driving force

is large enough, this term can be ignored and the rate law resembles irreversible kinetics .

So far we’ve seen that increasing the driving force of a single reaction translates to a better enzyme ef-

ficiency and lower demand. If we consider whole pathways, ones whose overall driving force is larger have

more of it to distribute among the reactions and therefore should also have higher efficiencies overall.

However, using “too much” driving force can also have downsides. Using a larger amount of the Gibbs

energy to drive the pathway reactions means that less of that energy would go for building biomass or

currency metabolites such as ATP. An example for this trade-off between the efficiency of single enzymes

(in terms of backward rates) and the overall pathway efficiency (in terms of ATP yield) was demonstrated

1In general, reaction stoichiometries can be arbitrarily scaled. For example, instead of a reaction 2 A → B, we may
write A → 1

2 B for convenience, which will only lead to a scaling factor in the reaction rate. However, this holds only
if reaction stoichiometries are used to describe mass-balance. In cases like Eq. (6.7), where stoichiometries appear in
kinetic rate laws or in thermodynamic balances, we do not have this choice. In these cases, the stoichiometries must
reflect the molecularities, that is, the actual number of reactant molecules involved in the enzymatic reaction.
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Figure 6.3: The thermodynamic efficiency term ηfor and some approximations – (A) In a given reaction,
the thermodynamic efficiency term ηfor = 1 − e−θ (solid line) can vary between 0 and 1 depending on the
driving force θ. Small driving forces make the enzyme inefficient, since ηfor → 0, while for large forces,
thermodynamics does not play a role as ηfor → 1. The dashed lines show two linear approximation that
hold always as bounds, but can also be used as good approximations for small or large θ values, respec-
tively: (1 − e−θ) < θ and (1 − e−θ) < 1. (B) The reciprocal value 1/ηfor is one of the factors determining
enzyme demand. The solid line shows the thermodynamic demand factor 1/ηfor, while the dashed lines
show the resulting approximations 1/ηfor > 1/θ and 1/ηfor > 1, corresponding respectively to the enzyme
demand approximations E ≥ v

kcatθ
and E ≥ v

kcat
.

by Flamholz et al. [162] who analyzed two versions of the famous glycolytic pathway (see Figure 6.1 below).

6.3.2 Driving forces should not be too small

With the factorized rate law 6.7, we can approximate the reaction rates by v ≤ e kcat (1 − e−θ) (where we
assumepositive fluxes by convention). The thermodynamic efficiency ηfor = 1−e−θ plays a prominent role.

As shown in Figure 6.3, this formula yields two important approximations: for small forces θ, that is, close

to equilibrium, we obtain ηfor ≈ θ, while for large forces, that is, for strongly forward-driving reactions, we

obtain ηfor ≈ 1. In fact, both approximations also serve as upper bounds across all θ values. What does

this mean? Far from equilibrium, the thermodynamic term does not play a role and can be ignored. Close

to equilibrium, in contrast we obtain a simple approximation for fluxes

v < e · k+
cat · (1 − e−θ) < e · k+

cat · θ (6.8)

and hence for the enzyme demand

e >
v

k+
cat · (1 − e−θ)

>
v

k+
cat · θ

. (6.9)

As θ goes to zero, the enzyme demand (for a given desired flux) goes to infinity. We already know the

reason from Chapter 3: the driving force determines the ratio of forward and reverse one-way fluxes,
v+

v− = eθ. If θ comes close to zero, their relative difference becomes very small, and in order to obtain

a given net flux v = v+ − v−, both v+ and v− must grow enormously, which would require an a large

amount of enzyme. This effect concerns only very small θ values - for θmuch larger than 1 (or ∆rG
′ much

smaller than -RT), it can be neglected. Therefore, redistributing driving forces between reactions, to avoid

very small forces, can save enzyme costs. The relation between driving forces, enzyme efficiency enzyme

demand is shown in more detail in Figure 6.4.

If small driving forces should be avoided to prevent enzyme costs from going infinity, how can this happen

in practice? The driving forces themselves depend onmetabolite levels, which can vary over several orders
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Figure 6.4: Thermodynamic forces, enzyme efficiency, and enzyme demand in a linear chain of reactions
– The plot in the center represent two possible profiles of the thermodynamic driving forces (blue and
red). The curves describe the cumulative ∆rG

′ values: while the total ∆rG
′ is fixed (and determined by

external metabolite concentrations), the shape of the profile can vary. In the optimal profile (in red), small
driving forces are avoided. The driving forces determine the ratios of forward and backward one-way
fluxes (red arrows), and at a given net flux (black arrows) the enzyme demands. In the suboptimal blue
curve, in contrast, the last three reactions show lower forces, and therefore relatively high reverse fluxes
(blue arrows); to obtain the same net flux, forward and backward fluxes have to be strongly increased,
which increases the enzyme demand.

of magnitude. While the true metabolite concentrations are usually unknown, we hypothesize that selec-

tion favors concentration profiles that prohibit very small driving forces, in order to escape the ensuing

large enzyme demands. Of course, completely avoiding small driving forces may be impossible, as there

is always a trade-off: if a metabolite concentration decreases, the driving forces of all reactions producing

it will increase, but the driving forces of all reactions consuming it will decrease simultaneously. So, all else

being equal, the optimal metabolite profile is one that distributes its driving forces as evenly as possible.

6.3.3 Max-Min driving force method

Previously in Chapter 4.3.2, we discussed adding thermodynamic constraints to constraint-based models

in order to comply with the second law of thermodynamics. We can extend that approach in order to

implement the idea of avoiding small driving forces. When we talk about the thermodynamic profile of

a metabolic pathway, we usually try to visualize it by the cumulative Gibbs energy of reaction: we start

at 0 and at each step add the ∆rG
′ of the next reaction, which, assuming the pathway is feasible, is a

negative number. The profile therefore has a shape of a downhill slope. The end point represents the total

Gibbs energy and depends only on the concentrations of the metabolites that are part of the net reaction.

Intermediate metabolites do not affect it, but they do determine the shape of the profile itself (see Figure

6.4). Specifically, each intermediate metabolite typically affects the driving force of two reactions – the one

producing it and the one consuming it – with opposite signs. Therefore, changing the concentration of an

intermediate can help increase the driving force of one reaction, but always at the expense of another

reaction. This strong coupling between ∆rG
′ is why it is not trivial to find the optimal thermodynamic

profile of a pathway.

TheMax-Min driving forcemethod (MDF) [163] is amethod for predictingmetabolite concentrations, based

on the principle of evenly distributed driving forces. All fluxes are fixed and given, and assumed to be pos-

itive. It assumes that each metabolite concentration must remain in a predefined range, converts each
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Figure 6.5: Max-Min Driving force method (MDF): an optimality problem in metabolite space – (A) Example
pathway with given equilibrium constants and fixed concentrations of the external metabolites X and Y .
What are the most favorable concentrations of the internal metabolites A and B? Assuming that small
driving forces should be avoided in all reactions, MDF determines the metabolite profile that optimizes a
worst case: it maximizes the worst (that is, smallest) driving force among all three reactions. (B) Driving
force in reaction 1, as a function of the logarithmic concentrations of A and B, called ln a and ln b. Higher
concentrations of A (the reaction product) lead to smaller driving forces. Above a critical value (where
X and A are in equilibrium), the driving force becomes negative, and a forward flux is impossible (gray
region). The concentration of B, which does not participate in the reaction, does not play a role. (C)
Driving force for reaction 2. Here, it is the ratio b/a that counts. The lower the ratio (lower right), the
higher the driving force. If the ratio is higher than the equilibrium constant, the driving force becomes
negative (grey region). (C) Driving force for reaction 3. (E) By overlaying the contours in (B), (C), and (D)
and taking the minimum value, we obtain the minimal driving force θmin among all three reactions. θmin

is a piecewise linear function of ln a and ln b within the feasible range, yielding positive forces in all three
reactions. The maximum point of this function is the optimum metabolite profile predicted by MDF. In
the example shown, the feasible concentration space is entirely defined by the driving forces themselves,
given the external concentrations. In general, physiological concentration ranges for all metabolites could
further decrease the solution space and shift the optimum point (not shown).

choice of metabolite concentrations into the corresponding pattern of driving forces, and determines the

smallest resulting driving force in the network. If this smallest driving force is negative, the flux distribu-

tion cannot be realized thermodynamically. Otherwise, the larger this smallest driving force, the better

the overall metabolite profile. Hence, among all possible metabolite profiles, MDF predicts the one that

maximizes the value of theminimal driving force across the network. Mathematically, this leads to a linear

optimization problem: in the space of logarithmic metabolite concentrations, a lower bound on all driving

forces (denoted B) is maximized (Eq. 6.10). An illustrative example is shown in Figure 6.5.

Maximizex,B B

Subject to − (∆rG′◦ +RT · N>x) ≥ B

ln(Cmin) ≤ x ≤ ln(Cmax)

(6.10)

MDF is easy to apply: it is based on a simple Linear Programming problem and requires only the following

input data: (i) the stoichiometric network; (ii) the flux directions; (iii)) the known equilibrium constants (or

equivalently, the standard reaction Gibbs free energies); (iv) physiological ranges for metabolite concen-
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trations. Based on these data alone, metabolite concentrations and driving forces (or ∆rG
′ values) are

predicted. An example application can be found in Hädicke et al. [164], where the potential of CO2 fixation

in E. coli via endogenous pathways was analyzed using MDF.

A theoretical insight from MDF is the notion of distributed bottlenecks. A simple bottleneck would consist

of a single reaction whose driving force cannot be increased because the substrates are at their upper

concentration bounds and the products are at their lower concentration bounds. Given the fixed equilib-

rium constant, nothing can be done to increase the driving force in this reaction. A distributed bottleneck

is more complicated: it consists of a series of reactions that all share the same low driving force, which, be-

cause of all the concentration constraints in the system, cannot be further increased (e.g. as in Figure 6.4).

Even though each single reaction looks “harmless” because its own driving force could still be increased,

this increase would happen at the expense of other driving forces.

6.3.4 The role of thermodynamics for metabolic states

In summary, thermodynamics provides important clues both about the feasibility of pathways fluxes and

about their enzyme demand. To use this knowledge, fluxes need to be considered together with metabo-

lite concentrations (to obtain the possible driving forces), but no detailed knowledge of enzyme kinetics is

required. Thermodynamics alone yields an upper bound on fluxes (and hence, a lower bound on enzyme

demands) that holds for any kinetic rate laws. The only required data (except for the metabolic network

itself) are equilibrium constants (or equivalently, standard Gibbs free energies of reactions ∆rG
′◦), which

can be obtained from the eQuilibrator tool (equilibrator.weizmann.ac.il) [165, 68, 69] as well as physiologi-

cal bounds onmetabolite concentrations. Given this information, and given a feasible choice ofmetabolite

concentrations, we can compute the driving forces of all reactions, and from the factorized rate law (and

assuming positive fluxes by convention) we can then approximate the reaction rates by v ≤ e kcat (1−e−θ).

We also recall from Chapter 3 that driving forces are not independent between reactions, but depend on

the metabolite concentrations, which creates trade-offs: in a chain A
R1→ B

R2→ C, a lower concentration of B

will increase the driving force in R1, but decrease the driving force in R2. For high enzyme efficiency (low

enzyme demand), all driving forces should in principle be high, but this is most important for low θ values

(while for θ � 1 it does not even matter). Therefore we may conclude that, to save enzyme, a cell should

rearrange its metabolite levels within physiological bounds such that small θ are avoided. Implementing

this as an optimality problem, we obtain MDF.

In conclusion, we described (i) a general rule of thumb that poor thermodynamics makes reactions costly;

(ii) simple approximations of enzyme cost; and (iii) practical methods (MDF) to obtain metabolite profiles

with favorable thermodynamic properties.

6.4 Enzyme cost minimization

6.4.1 Enzyme cost minimization

The problem of minimizing the total enzyme demand (or cost) for a given pathway can be solved numer-

ically, thanks to the fact that they are always convex [166]. Finding the minimum of the convex objective

(the total enzyme cost) in a convex set (the set of admissible metabolite profiles, a convex polytope in log-

metabolite space) can be done efficiently. In contrast to general optimality problems, such problems have

a unique local optimum,which canbe foundby simple numericalmethods. In this section, wedemonstrate

it with a simple example, the same three-reaction pathway that you already saw in Section 6.3 above.

6.4.2 Enzyme cost landscape of a metabolic pathway

Given the fluxes, kinetics, and concentration bounds in a metabolic pathway model, one can predict the

enzyme demand by assuming that cells minimize the enzyme cost in that pathway. In the Enzyme Cost

Minimization method A reaction rate v = e · f(c) depends on enzyme level e and metabolite concen-

https://equilibrator.weizmann.ac.il
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trations ci through the enzymatic rate law, f(c). If the metabolite concentrations were known, we could

directly compute enzyme demands e = v/f(c) from fluxes, and similarly calculate the flux-specific enzyme

demand e/v = 1/f(c). However, metabolite concentrations are usually unknown and vary between ex-

perimental conditions. Therefore, there can be many solutions for e and c realizing one flux distribution.

To select one of them, we employ an optimality principle: we define an enzyme cost function (for instance,

total enzyme mass) and choose the enzyme profile with the lowest cost while restricting the metabolite

levels to physiological ranges and imposing some thermodynamic constraints. As we shall see below, the

solution is in many cases unique.

Let us demonstrate this procedurewith a simple example (Figure 6.6 (a)). In the pathwayX 
 A
 B 
 Y ,

the external metabolite levels [X] and [Y] are fixed and given, while the intermediate levels [A] and [B] need

to be found. As rate laws for each of the three reactions, we use reversibleMichaelis-Menten (MM) kinetics

v = E
k+

cat s/KS − k−
cat p/KP

1 + s/KS + p/KP
(6.11)

with enzyme level E, substrate and product levels s and p, turnover rates k+
cat and k−

cat, and Michaelis

constants KS and KP. In kinetic modeling, steady-state concentrations would usually be obtained from

given enzyme levels and initial conditions through numerical integration. Here, instead, we fix a desired

pathway flux v and compute the enzyme demand as a function of metabolite concentrations:

E(s, p, v) = v
1 + s/KS + p/KP

k+
cat s/KS − k−

cat p/KP
. (6.12)

Figure 6.6 shows how the enzyme demand in each reaction depends on the logarithmic reactant concen-

trations. To obtain a positive flux, substrate levels s and product levels pmust be restricted: for instance,

to allow for a positive flux in reaction 2, the rate law numerator k+
cat [A]/KS − k−

cat [B]/KP must be posi-

tive. This implies that [B]/[A] < Keq where the reaction’s equilibrium constant Keq is determined by the

Haldane relationship,Keq = (k+
cat/k

−
cat) · (KP/KS). With all model parameters set to 1, we obtain the con-

straint [B]/[A] < 1, i.e. ln[B] − ln[A] < 0, putting a straight boundary on the feasible region (Figure 6.6 (c)).

Close to chemical equilibrium ([B]/[A] ≈ Keq), the enzyme demand e2 approaches infinity. Beyond that

ratio ([B]/[A] > Keq) no positive flux can be achieved (grey region). Such a threshold exists for each reac-

tion (see Figure 6.6 (b)-(d)). The remaining feasible metabolite profiles form a triangle in log-concentration

space, which we call metabolite polytope P (Figure 6.6 (e)), and Eq. (6.12) yields the total enzyme demand

etot = e1 + e2 + e3, as a function on the metabolite polytope. The demand increases steeply towards the

edges and becomes minimal in the center. The minimum point marks the optimal metabolite profile, and

via Eq. (6.12) we obtain the resulting optimal enzyme profile.

The metabolite polytope and the large enzyme demand at its boundaries follow directly from thermody-

namics. To see this, we consider the unitless thermodynamic driving force Θ = −∆rG
′/RT [81] derived

from the reaction Gibbs free energy ∆rG
′. The thermodynamic force can be written as Θ = ln Keq

[B]/[A] ,

i.e. the driving force is positive whenever [B]/[A] is smaller than Keq, and it vanishes if [B]/[A] = Keq.

How is this force related to enzyme cost? A reaction’s net flux is given by the difference v = v+ − v− of

forward and backward fluxes, and the ratio v+/v− depends on the driving force as v+/v− = eΘ. Thus,

only a fraction v/v+ = 1 − e−Θ of the forward flux acts as a net flux, while the remaining forward flux is

partially canceled by the backward flux. Close to chemical equilibrium, where themass-action ratio [B]/[A]
approaches the equilibrium constant Keq, the driving force goes to zero, the reaction’s backward flux in-

creases, and the flux per enzyme level drops. This is what happens at the triangle edges in Figure 6.6: a

reaction approaches chemical equilibrium, the driving force Θ goes to zero, and large enzyme amounts

are needed for compensation. Exactly on the edge, the driving force vanishes and no enzyme level, no

matter how large, can support a positive flux. The quantitative cost depends on model parameters: for

example, by lowering a kcat value, the increase in enzyme cost at the boundary becomes steeper and the

optimum point is shifted away from the boundary (see Figure 6.6 (f)).
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Figure 6.6: Enzyme demand in a metabolic pathway – (A) Pathway with reversible Michaelis-Menten kinet-
ics (equilibrium constants, catalytic constants, andKM values are set to values of 1, [A] and [B] denote the
variable concentrations of intermediatesA andB in mM). The external metabolite concentrations [X] and
[Y ] are fixed. Plots (B)-(D) show the enzyme demand of reactions 1, 2, and 3 at given flux v = 1 according
to Eq. (6.12). Grey regions represent infeasible metabolite profiles. At the edges of the feasible region
(where A and B are close to chemical equilibrium), the thermodynamic driving force goes to zero. Since
small forces must be compensated by high enzyme levels, edges of the feasible region are always dark
blue. For example, in reaction 1 (panel (B)), enzyme demand increases with the level ofA (x-axis) and goes
to infinity as the mass-action ratio [A]/[X] approaches the equilibrium constant (where the driving force
vanishes). (E) Total enzyme demand, obtained by summing all enzyme levels. The metabolite polytope –
the intersection of feasible regions for all reactions – is a triangle, and enzyme demand is a cup-shaped
function on this triangle. The minimum point defines the optimal metabolite concentrations and optimal
enzyme levels. (F) As the kcat value of the first reaction is lowered by a factor of 5, states close to the tri-
angle edge of reaction 1 become more expensive and the optimum point is shifted away from the edge.
(G) The same model with a physiological upper bound on the concentration [A]. The bound defines a new
triangle edge. Since this edge is not caused by thermodynamics, it can contain an optimum point, in which
driving forces are far from zero and enzyme costs are kept low. Please note the resemblance to the MDF
problem for the same pathway, shown in Figure 6.5.

6.4.3 Enzyme cost as a function of metabolite concentrations

The prediction of optimal metabolite and enzyme levels can be extended to models with general rate laws

and complex network structures. In general, enzyme demand depends not only on driving forces and kcat

values, but also on the kinetic rate law, which includes KM values and small-molecule regulation. We can

conveniently model or approximate these factors by using factorized rate laws. Let us write this rate laws

here again in a general form to see the different factors at play. As we learned in Section 6.2, the rate of

a reaction depends on enzyme level e, forward catalytic constant k+
cat (i.e. the maximal possible forward

rate per unit of enzyme, in s−1), driving force (i.e. the ratio of forward and backward fluxes), and on kinetic

effects such as substrate saturation or small-molecule regulation. If all active fluxes are positive, reversible

rate laws like the Michaelis-Menten kinetics in Eq. (6.11) can be factorized as [82]:

v = e · k+
cat · ηfor · ηsat · ηreg. (6.13)

Negative fluxes, which would complicate our formulae, can be avoided by orienting the reactions in the

direction of fluxes.

Enzyme demand can be quantified as a concentration (e.g. enzyme molecules per volume) or mass con-
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centration (where enzyme molecules are weighted by their molecular weights). If rate laws, fluxes, and

metabolite concentrations are known, the enzyme demand of a single reaction l follows from Eq. (6.13) as

el(c, vl) = vl · 1
k+

cat,l

· 1
ηfor

l (Θ(c))
· 1
ηsat

l (c) · 1
ηreg

l (c) . (6.14)

To determine the enzyme demand of an entire pathway, we sum over all reactions: Epath
tot =

∑
l
el. Based

on its enzyme demands el, we can associate eachmetabolic flux with an enzyme cost q =
∑

l
hel el, describ-

ing the effort ofmaintaining the enzymes. The burdens hel of different enzymes represent, e.g. differences

in molecular mass, post-translational modifications, enzyme maintenance, overhead costs for ribosomes,

as well as effects of misfolding and non-specific catalysis. The enzyme burdens hel can be chosen heuris-

tically, for instance, depending on enzyme sizes, amino acid composition, and lifetimes. Setting hel = ml

(protein mass in grams per mole), q will be in gram protein per gram cell dry weight. Considering the spe-

cific amino acid composition of enzymes, we can also assign specific costs to the different amino acids.

Alternatively, an empirical cost per protein amount can be established by the level of growth impairment

that an artificial induction of protein would cause [40, 167]. Thus, each reaction flux vl is associatedwith an

enzyme cost ql, which can be written as a function ql(vl, c) ≡ hel el(c, vl) of flux and metabolite concentra-

tions. From now on, we refer to log-scale metabolite concentrations si = ln ci to obtain simple optimality

problems below. From the factorized rate law Eq. (6.14), we obtain the enzyme cost function

q(s,v) ≡
∑

l

hel el(vl, s) =
∑

l

hel · vl · 1
k+

cat,l

· 1
ηfor

l (s)
· 1
ηsat

l (s) · 1
ηreg(s) (6.15)

for a given pathway flux v. If the fluxes are fixed and given, our enzyme cost becomes, at least formally,

a function of the metabolite levels. The cost function is defined on the metabolite polytope P, a convex

polytope in log-concentration space containing the feasible metabolite profiles. Like the triangle in Figure

6.6, the polytope is defined by physiological and thermodynamic constraints.

Beyond minimizing the total enzyme cost, one can also use Enzyme Cost Minimization to analyze the

individual enzymedemands. When themetabolite levels are known, the demand can be directly calculated

and each efficiency factor (η) in Eq. (6.15). By omitting some factors or replacing themby constant numbers

0 < η ≤ 1, simplified enzyme cost functions with fewer parameters can be obtained. For example, ηfor = 1
would imply an infinite driving force Θ → ∞ and a vanishing backward flux, ηsat = 1 implies full substrate

saturation, and ηreg = 1 implies full enzyme activation and no enzyme inhibition (or no small-molecule

regulation at all). In these limiting cases, enzyme activity will not be reduced, and enzyme demand will be

given by the capacity-based estimate v/k+
cat, a lower estimate of the actual demand. Instead of omitting

an efficiency factor, it can also be set to a constant value between 0 and 1. Such simplifications and the

resulting enzyme cost functions with fewer parameters can be practical if kinetic constants are unknown.

6.4.4 General lessons from Enzyme Cost Minimization

Enzyme cost minimization not only provides numerical solutions, but also some general insights.

1. Convexity Enzyme Cost Minimization shows again the importance of the metabolite polytope. The us-

age of logarithmicmetabolite concentrations not only leads to a good search space for feasible metabo-

lite profiles (as in MDF), but also facilitates optimization because enzyme cost is a convex function of the

metabolite log-concentrations [168]. Convexity makes this optimization tractable and scalable – unlike

a direct optimization in enzyme space. Convexity holds for a wide range of rate laws and for extended

versions of the problem, e.g. including bounds on the sum of (non-logarithmic) metabolite concentra-

tions or bounds on weighted sums of enzyme fractions.

2. Factorized rate laws disentangle individual enzyme cost effects To see how metabolic states are

shaped by different physical factors, we considered factorized rate laws. The different terms in these

functions represent specific physical factors and require different kinetic and thermodynamic data for

their calculation. By neglecting some terms, one obtains different approximations of the true enzyme
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cost. By comparing the different scores, we can estimate the enzyme cost that cells “pay” for running

reactions at small driving forces (to save Gibbs free energy) or for keeping enzymes beneath substrate-

saturation (e.g., to dampen fluctuations in metabolite levels ).

3. Relationship to other optimality approaches Beyond their practical advantages, factorized enzyme

cost functions also allow us to easily compare our method to earlier modeling and optimization ap-

proaches. These approaches typically focused on only one or two of the factors that are taken into

account in Enzyme Cost Minimization, and many of them can be reformulated as approximations of

this method [163, 169, 157].

4. Enzyme cost is related to thermodynamics In FBA, thermodynamic constraints and flux costs appear

as completely unrelated aspects of metabolism (as is explained in Chapter 5). Thermodynamics is used

to restrict flux directions, and to relate them tometabolite bounds, while flux costs are used to suppress

unnecessary fluxes. In Enzyme Cost Minimization, thermodynamics and flux cost appear as two sides

of the same coin. Like in FBA, flux profiles are thermodynamically feasible if they lead to a non-empty

metabolite polytope, allowing for positive forces in all reactions. However, the values of these forces

also play a role in shaping the enzyme cost function on that polytope. Together, metabolite polytope

and enzyme cost function (as in Figure 6.6) summarize all relevant information about flux cost.

Many pathways are regulated, for instance by feedback inhibition of enzymes via the end product. While

this may stabilise the dynamics and adapt it to current demands, such enzyme regulation comes at a cost,

which we can estimate by following the logic of Enzyme Cost Minimization. Many enzymes are regulated

by small molecules that act as competitive or allosteric inhibitors [170], an effective way to implement

feedback control, for example to adapt the flux in biosynthesis pathways to current needs. In order for

such a regulation to work, the enzyme needs to be partially inhibited on average (because only then, its

activity can be increased on demand, by alleviating the inhibition). Therefore, the enzyme efficiency goes

down, and the cell needs to provide more enzyme to catalyze the same flux than without the inhibition.

Howmuch will this regulation cost the cell as part of the enzyme budget? From the perspective of Enzyme

Cost Minimization, where we start from desired fluxes and compute the enzyme demand, this question is

easy to answer: in the inhibited enzyme case, the lower efficiency will be described by a factor ηreg ∈ [0, 1]
(Mathematical Details Box 6.C). In the same reaction, the enzyme demand increases by a factor 1/ηreg, so

the extra cost is simply 1/ηreg − 1 times the “baseline” cost of this enzyme (without inhibition). Specif-

ically, a non-competitive inhibitor, with efficiency factor ηreg = 1
1 + c/KI

yields a cost factor 1 + c/KI . If the

metabolite concentrations are fixed, this corresponds to an extra enzyme demand ∆el = el ci
KI,li

. Similarly,

an enzyme activation with efficiency factor ηreg = c/KA
1+c/KA

in the rate laws yields a cost factor 1+c/KA
c/KA

=
1+KA/c in the formulae for enzymedemands. If themetabolite concentrations are fixed, this corresponds

to an extra enzyme demand ∆el = el KA,li

ci
(where l and i denote the regulated reaction and the regulating

metabolite, respectively). As usually in Enzyme Cost Minimization, an optimal rearrangement of enzyme

andmetabolite concentrationsmust be taken into account, whichwill then slightly reduce the overall cost.

The predictions of optimal states by Enzyme CostMinimization rely on twomain inputs: ametabolicmodel

that relatesmetabolite concentrations, enzyme levels, and fluxes, and an optimality principle based on the

assumption that cells realize their production fluxes at a minimal total enzyme cost. To test whether this

optimality principle holds at all, Noor et al. [166] compared the predictions from Enzyme CostMinimization

to predictions from the samemetabolic model and the same flux distribution, but with randomly sampled

metabolite profiles (and the corresponding enzyme profiles). In comparison, metabolite profiles sampled

close to the Enzyme Cost Minimization optimum yielded significantly better enzyme level predictions than

metabolite profiles sampled more broadly. This strongly supports the idea that E. coli metabolism, in the

conditions studied, is at least partially optimized for low enzyme cost, and thus supports cost-optimality

as a principle in living cells.
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6.5 Comparison of alternative pathways

Having clarified ourmain functional criteria for pathways (substrate productivity and enzyme productivity)

and how they depend on pathway details (including outer concentrations), we can now compare alterna-

tive pathways by their substrate and enzymedemandper production flux (an example of “cost per benefit”)

and see which one scores better.

6.5.1 A tale of two glycolyses

One of the canonical examples discussed throughout this book is how cells choose between respiration

and fermentation for making their ATP. However, having a precise kinetic model for respiration is difficult,

since it involves electron transfer andmembrane-bound reactions. Therefore, it is challenging to calculate

the enzyme cost of respiration using models like those discussed in this chapter. Flamholz et al. [162]

analyzed a similar but simpler case by comparing between the EMP and ED variants of glycolysis, since all

the required enzymes are soluble and expressed in the cytoplasm and/or the periplasm andmany of their

kinetic parameters aremeasured. The commondescription of glycolysis ends in pyruvate (e.g., as depicted

in Figure 6.1). This means that the pathway is not neutral in terms of redox, since the oxidation state of

pyruvate is higher than glucose. In order to simplify the comparison and focus only on ATP yield (rather

thanNADH), the EMP and EDpathwayswere extended to end in lactate by including lactate dehydrogenase

(ldh) as an extra step, making them redox neutral. These could be thought of as themore relevant versions

of the pathways in anaerobic conditions.

Although EMP-based fermentation is usually described in textbooks as less efficient than respiration, since

it produces only 2 moles of ATP per mole glucose instead of ≈ 30, the ED pathway has an even lower

yield – 1 mole of ATP. Nevertheless, the ED pathway is quite common among the bacteria. For example,

Zymomonas mobilis – the bacterium used in fermenting pulque (a.k.a., agave wine [171]) and a promising

platform for bio-production [172] – lacks key enzymes from the EMP pathway and uses the ED pathway

exclusively to metabolize sugars. These bacteria don’t seem to be bothered by the low ATP yield and can

achieve high growth rates [173]. This already suggests to us that the ED pathway is probably superior to

EMP in other aspects, such as the enzyme demand. Another clue was provided by a study which found

that the ED pathway improves E. coli growth during glucose up-shifts and that the flux through it increases

by 130% [174] (see Economic Analogy Box 6.D)

To see if indeed themodels provide predictions that are consistentwith the experimental evidence, Flamholz

et al. [162] first used the MDF method to compare the two pathways. The ED pathway was found to be

substantially more thermodynamically favorable, with a much higher score than the EMP pathway (8.0

versus 4.8 kJ/mol, see Figure 6.7 upper row).

Although the EMP pathway is clearly more favorable, we can still argue that an MDF of 4.8 kJ/mol is good

enough, as it means θ > 1.9 for each one of the pathway reactions. In this case, ηfor > 0.85 (see Figure

6.3) and therefore it might be a small price to pay for double the ATP yield. But, as discussed earlier, the

efficiency of a pathway is affected by other factors besides the thermodynamics. Flamholz et al. [162] tried

to see whether ED is superior to EMP also in terms of the enzyme cost using the Enzyme Cost Minimization

method. Indeed, they found that the ED pathway would require ≈5 times less protein compared to EMP

for catalyzing the same flux (see Figure 6.7 bottom row). So, although the ATP yield of the ED pathways is

half that of EMP, one can still generate ATP at a higher rate using the same amount of protein, according

to the model.

The comparison of EMP and ED provided some insight as to a trade-off that can exists between the yield

of a pathway and its cost, or enzyme burden. However, one can expand the question and ask if there are

any other theoretically possible glycolysis pathways that might be able to break this trade-off and bemore

efficient than EMP and ED in both aspects. Ng et al. [151] tried to address this question with an algorithm

they called optStoic that generates all biochemically feasible routes between glucose and pyruvate, with

various ATP/glucose yields. They then ran pathway analysis on all 11,916 options and found that indeed
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Figure 6.7: Comparing twometabolic pathways using theMDF and the EnzymeCostMinimizationmethods
– For the MDF analysis (top row), the dark blue line represents the cumulative Gibbs energy along the
pathway if all metabolite concentrations were 1 mM. The MDF solution is presented as a gray line, where
the bottleneck reactions are highlighted in red. For the Enzyme Cost Minimization analysis (bottom row),
we used the same kinetic parameters for all enzymes in both pathways (kcat = 200 s

−1,KM = 200 µM, same
as in [162]). However, here we used an updated version of Enzyme Cost Minimization with the factorized
rate law, therefore the results are not identical. A Jupyter notebook for generating the figure can be found
on the book website.

both EMP and ED are both (nearly) Pareto-optimal. This suggests that evolution may indeed select for

features such as high yield and low enzyme cost, where one might be more important than the other

depending on the context.

6.5.2 Metabolic engineering

Besides the quest for understanding the evolution of existing biochemical pathways, pathway analysis

methods like MDF and Enzyme Cost Minimization have also been used by metabolic engineers in order

to rank and prioritize different alternative designs. For example, Volpers et al. [175] used the MDF algo-

rithmand the Pathway Specific Activitymeasure to compare betweendesigns of photo-electro-autotrophic

strains. Similarly, Löwe and Kremling [176] used the Enzyme Cost Minimization algorithm to predict the

enzyme demand of both natural and synthetic carbon fixation cycles.

6.5.3 Predicting the metabolite concentrations

So far, the examples given in this section focused on analyzing and comparing pathway alternatives in

isolation, outside of the context of actual living organisms. However, we should not forget that the mo-

tivation for optimization goals such as enzyme demand are derived from physiological and evolutionary

principles. Therefore, the optimal solutions coming from MDF and Enzyme Cost Minimization might be

good predictions for the actual metabolic state that exists in naturally evolved organisms.

For example, a few years after the in silico analysis of the ED pathway [162], Jacobson et al. [177] mea-

https://gitlab.com/principlescellphysiology/book-economic-principles-in-cell-biology/-/blob/master/book-manuscript/latex/chapters/PAT/jupyter/plot_figures.ipynb
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(A) (B) (C)

Figure 6.8: Validation of metabolite and enzyme concentrations, predicted by Enzyme Costs Minimization,
in the central carbon metabolism of E. coli – (A) Comparing predicted and measured metabolic concentra-
tions. The thin diagonal line marks x = y, i.e. where the predictions match the measurements. Hollow
blue points represent co-factors whose concentration is fixed in the analysis and therefore are not actu-
ally predicted. Full blue points are for all other metabolites whose allowed concentration range was set
to 1µM − 10mM . The Root Mean Squared Error (RMSE, in log10 scale), r2 (Pearson correlation), and p-
value refer only to the full points. (B) Comparing predicted and measured enzyme concentrations. (C) A
pie chart showing the distribution of the predicted absolute mass-concentrations for both enzymes (or-
ange) and metabolites (blue) together. Note that aconitase (catalyzing the reactions acn1 and acn2) has
a lower specific activity than glyceraldehyde-3P dehydrogenase (catalyzing gap), and therefore occupies a
higher fraction of the mass-concentration even though the required concentration of the latter enzyme is
higher. Labels of enzymes and metabolites that occupy the smallest fractions of the biomass are omitted
due to lack of space.

sured the intracellular concentrations ED intermediates in Z. mobilis, and used them to calculate the Gibbs

energies of the pathway’s reactions. Indeed, they found that they closely fit the predicted values from

the MDF solution. Similarly, measured values of enzyme and metabolite concentrations in E. coli correlate

with predicted values from Enzyme Cost Minimization (when empricial reaction fluxes were obtained from
13C-MFA measurements, Figure 6.8) [166]. In a related paper, Wortel et al. [178] expanded the idea of this

method to explore the entire flux polytope.

These results suggest that indeed the optimization process that occurs throughout evolution is somewhat

similar to the (much simplified) models presented here. Of course, improving the accuracy of the inputs

and accounting for other effects that impact fitness could improve the predictions further. On the other

hand, it might be naïve to expect natural systems to be optimal, which would mean that using basic prin-

ciples to precisely predict phenotypes is an impossible task.

Economics analogy 6.D The push for fast growth

The ED pathway seems to be useful as a quick response to a sudden increase in abundance of resources (glucose),

but less efficient than EMP when the environment is steady. This is somewhat analogous to start-up companies,

which burn large amounts of venture capital in order to grow rapidly. However, after reaching a certain scale, the

dynamic nature of start-ups often becomes a burden, where overhead costs pile up and signal that it is time to

join a larger corporation.

6.6 Concluding remarks

Coming back to our initial question, what have we learned from theory about the choice between possible

pathways? The “choice between pathways” in a larger network is actually a choice between (network-wide)

flux distributions that use different alternative pathways. Here we discussed how to score the usefulness
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Economics analogy 6.E Two central assumptions: homogeneity and stationarity

In the models described in this chapter, we generally assume that our system (for example, a metabolic pathway

in a cell) is spatially and temporally homogeneous, and that it shows stable stationary states. This is clearly a

simplification: in reality, cells are inhomogeneous, with compartments, with enzymes unequally distributed across

the cell, and with enzymes forming complexes or dedicated compartments like the glycosome (an organelle in

some organisms that contains the glycolytic enzymes), which changes (average) enzyme kinetics. Cells are also

dynamic on various time scales (chemical noise, metabolic dynamics, protein expression dynamics), which also

may change (average) enzyme kinetics. If we ignore this in ourmodels – assuming a timeless steady state – this will

not only cause approximation errors in our metabolic model, but much more importantly, we ignore the fact that

the cell can exploit spatial inhomogeneity (e.g. compartments or channeling) and non-steady states (e.g. metabolic

oscillations, or adaptation to fluctuations in the environment) to further improve its fitness (as compared to a

steady-state, constant enzyme model).

Interestingly, classical economic theory makes similar assumptions – e.g. about markets in equilibrium– which

ignore the spatio-temporal, dynamic side of real economic systems, which – as in the case of metabolic models –

is likely to lead to wrong results.

of given flux distributions, which can also be used to score single pathways.

Importantly, flux distributions are scalable (by scaling all enzyme levels proportionally, and keeping all

metabolite levels constant). If we scale the fluxes, this will scale both the flux benefit (for instance, the

production of a desired product or biomass) and the required resources (substrates consumed, enzyme

budget invested, or toxic byproducts produced). Because of this scaling property, our “quality criteria”

mostly have the form of ratios between an output flux (as the benefit) and some (limited) resource (the

cost). Such ratios are called “productivities”, where in Chapter 4-5 we focused mostly on substrate pro-

ductivity (or yield on substrate) and in this chapter on enzyme productivity (or enzyme-specific rate) as

important criteria. Why these criteria? On the one hand, they are closely related to some big objectives of

the entire cell – depending on the type of competition it is facing. On the other hand, they are easy to link

to some concrete criteria about metabolic pathways such as product yield, pathway length, kcat values,

thermodynamic forces, etc.

Since yield on substrate depends only on the shape of the flux distribution, it can be studied by methods

like FBA (see chapters 4 and 5). In this chapter, we focused on themore difficult case, enzyme productivity,

where thermodynamics, enzyme kinetics, and the arrangement of metabolite and enzyme concentrations

come into play. The factorized law in Eq. (6.7) shows us how the enzyme demand of a flux distribution

can be computed if metabolite concentrations are known, and how the demand depends on forward kcat,

the thermodynamic force, and enzyme saturation. The only difficulty is that the thermodynamic forces

and metabolite concentrations are usually not known. Here we considered some best-case scenarios,

assuming that the cell will realize the concentration arrangements that optimize pathway performance.

When considering thermodynamics alone (and making some further simplifications), this led to the MDF

method. For the full problem, the solution is provided by Enzyme Costs Minimization. This method is

directly related to the different pathway criteria we discussed initially (including pathway length, thermo-

dynamic forces, and kcat values) and thus shows how these different factors determine enzyme demand.

As a numerical method, it is relatively easy to use because it is a convex optimization problem. But if little

data is available, simpler methods such as MDF, with their lower demand for parameters, may be useful

tools to predict pathway usage.

In order to predict optimal metabolic states, we started in the previous chapter with models that optimize

the fluxes in an entire network. Howeve, to keep the models linear, kinetics and concentrations were

largely ignored. In FBAwithmolecular crowding, a connection betweenfluxes and enzyme levelswasmade

via empirical parameters, the apparent catalytic rates or ”enzyme efficiencies”. We now saw that these

parameters are not at all constant parameters, but emerge from kinetics and given concentration profiles,

and we also saw how optimal concentration profiles can be computed for a given flux distribution. This
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means: we now know how to predict optimal fluxes from known enzyme efficiencies, and we know how to

predict optimal concentrations (and therefore enzyme efficiencies) from known fluxes. In the next chapter

we will put these two things together, in order to predict all variables in the system – fluxes, metabolite

concentrations, enzyme efficiencies, and enzyme levels – froma single principle ofmaximal overall enzyme

efficiency.
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Problems

Problem 6.1 Pathway efficiencies

Estimate pathway efficiencies (i.e. product production rates per total enzyme concentration) from sim-

ple back-of the envelope calculations and plausible numbers (refer to the BioNumbers database for

realistic values). (a) From pathway length (assuming reasonable apparent kcat values); (b) from given

apparent kapp values (or given kcat values and ∆rG). (c) Convert the results into growth rates (assuming

realistic estimates of the total protein density; the proteome fraction ofmetabolic enzymes; the biomass

production rate etc). Assume plausible numbers in all cases.

Problem 6.2 Efficiency – dependence on substrate

Compute the reduction of pathway efficiency in a linear chain when decreasing the external substrate

concentration (no constraints on metabolite levels)

Problem 6.3 ATP yield in glycolysis

Derive the optimal ATP yield in a glycolysis model with a linear flux-force relationship

Problem 6.4 MDF method

Implement the MDF method in a programming language of your choice.

Problem 6.5 MDF and enzyme cost

The optimality principle of MDF (avoiding small thermodynamic driving forces) can be justified by as-

suming that low driving forces would entail high enzyme demands. Do you expect that MDF solutions

are also Enzyme Costs Minimization solutions (or vice versa)? Otherwise, can you think of an approxi-

mation of the Enzyme Costs Minimization problem, such that MDF provides the correct solution? Show

how the Enzyme Costs Minimization objective could be approximated step by step, and illustrate this

with an example.

Problem 6.6 Cycle of chemical reactions

Assume a cycle of chemical reactions A ↔ B ↔ C ↔ A without co-factors or external inputs/outputs.

(a) Show that there is no stationary, thermodynamically feasible flux distribution except for the (trivial)

vanishing flux. (b) Explain why, if there were a flux, this would be a perpetuum mobile.

https://doi.org/10.1073/pnas.0907176107
https://doi.org/10.1371/journal.pcbi.1003483
https://doi.org/10.1371/journal.pcbi.1005167
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Problem 6.7 Optimal enzyme levels in two-reaction chain

Consider a chain of two reactions S ↔ X ↔ P with enzymes e1 and e2, v1 = e1(k+1S − k−1X), v2 =
e2(k+2X − k−2P ). Compute the steady state flux given e1, e2. Let e1 + e2 = Epath

tot be fixed. Determine

e1, e2 such that the flux is maximal. Use Lagrange multipliers. Hint: Assume forward flux where P/S <

(k+1k+2)/(k−1k−2) = q1q2.

Problem 6.8 Flux maximization in a linear pathway

Prove that the function:

f(e) = 1∑
i
(Aiei)−1 (6.16)

for a fixed A and under the constraint
∑

i
ei = etot, is at its maximum when:

ei = etot · A
−1/2
i∑

i
A

−1/2
i

Problem 6.9 Haldane kinetic rate law

Haldane described an enzyme-catalyzed reaction by three steps, each following a mass-action rate law:

S + E
k1−−⇀↽−−k2

ES
k3−−⇀↽−−k4

EP
k5−−⇀↽−−k6

P + E . (6.17)

The ODE system describing the change in time of each species is:

d[ES]
dt

= [E] · [S] · k1 + [EP ] · k4 − [ES] · (k2 + k3)

d[EP ]
dt

= [E] · [P ] · k6 + [ES] · k3 − [EP ] · (k4 + k5)

d[E]
dt

= −[E] · [S] · k1 + [ES] · k2 + [EP ] · k5 − [E] · [P ] · k6

(6.18)

Prove that at quasy-steady-state (where the total enzyme concentration is fixed, and the concentration

of each species doesn’t change over time), the rate in which [S] is converted to [P ] is governed by the

following rate law:

v = [E0]k
+
cat[S]/KS − k−

cat[P ]/KP

1 + [S]/KS + [P ]/KP
(6.19)

where:

KS = k2k4 + k2k5 + k3k5

k1(k3 + k4 + k5) ; KP = k2k4 + k2k5 + k3k5

k6(k2 + k3 + k4) ; k+
cat = k3k5

k3 + k4 + k5
; k−

cat = k2k4

k2 + k3 + k4

Problem 6.10 The factorized rate law

Use the Haldane relationship:
k+

cat

k−
cat

KP

KS
= k1k3k5

k2k4k6
= Keq (6.20)

and the definition of Gibbs free energy:

∆rG
′◦ = −R · T · lnKeq

∆rG
′ = ∆rG

′◦ +R · T · ln ([P ]/[S])
(6.21)

to prove that Eq. (6.19) is equivalent to the following factorized rate law:

v = [E0]k+
cat ·

(
1 − e∆rG′/RT

)
· [S]/KS

1 + [S]/KS + [P ]/KP
. (6.22)



Chapter 7

Optimization of metabolic states

Andreas Kremling, Wolfram Liebermeister, Elad Noor and Meike T. Wortel

Chapter overview

◦ Optimalmetabolic states in this chapter refer to enzyme-efficient states, which aremetabolic states

that realize a given flux objective at a minimal enzyme cost.

◦ In models without further constraints, flux distribution of enzyme-efficient states are Elementary

Flux Modes (EFMs).

◦ Elementary Flux Modes can be used to find enzyme-efficient states in networks that would be too

large to optimize metabolic states ”by brute force”.

◦ Biomass per enzyme efficiency can be converted to into cell growth rate by simple approximative

formulae.

◦ Which Elementary Flux Modes is realized in an enzyme-efficient state depends on the external

conditions.

◦ As growth conditions are changing, the flux profile either changes continuously (together with and

metabolite and enzyme concentrations) or fluxes change discontinuously, implying jumps also in

metabolite and enzyme concentrations.

7.1 Introduction

In a simple economic picture of cells, we assume that cells adjust their metabolic state in each environ-

ment to obtain amaximal fitness advantage. Thismay be impossible in reality, but it remains an interesting

question what this best metabolic state would look like, according to our knowledge of cells. So what is the

best metabolic state overall (comprising metabolic fluxes, metabolite concentrations and enzyme levels)?

What pathways should a cell use, which enzymes should be induced or repressed, and how should this

change in a new environment? To answer these questions, we need to remember that all metabolic vari-

ables (fluxes, metabolite levels, enzyme levels, and enzyme efficiencies) depend on each other. Physically,

fluxes depend onmetabolite concentrations through kinetics and enzyme regulation (e.g. competitive inhi-

bition) andmetabolites are produced and consumed by the fluxes until a steady state is reached. Hence, if

we think in terms of cellular economics (treating enzymes as control variables), then all metabolic variables

must be optimized together.

In the previous chapters we saw some ways to predict optimal metabolic fluxes, metabolite concentra-

tions and enzyme levels separately: in Flux Balance Analysis (FBA, Chapter 5), we optimized fluxes by max-

imizing an objective function (typically biomass) while in Enzyme Cost Minimization [162, 166] (Chapter 6)

metabolite concentrations were optimized by minimizing cost (or, equivalently, maximizing the enzyme

109
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efficiencies). Each of these methods is based on a strong assumption: FBA requires measured flux ranges

and/or apparent catalytic rates and assumes enzyme saturation effects can be neglected, while enzyme

cost minimization requires a given flux distribution. But what if we don’t know any of the variables in

advance? How can we predict all of them from first principles?

Before thinking about this, let us briefly step back: what do we actually mean by an “optimal state”? What

quantity should be maximized in metabolism? There could be very different aims (e.g. production in

biotechnology, versus number of offspring and survival in a wild-type cell). However, in both cases an im-

portant aim is cell growth – or at least, avoiding strong growth deficits. Below we will see that cell growth

depends, to a good approximation, on biomass/enzyme efficiency, that is, biomass production per total

enzyme invested. Hence, whenever fast growth is important, cells should maximize this efficiency.

Thus, we will consider the following optimality problem: maximize biomass/enzyme efficiency, defined

as the production flux per invested enzyme with respect to all metabolic variables (metabolites, enzymes

and fluxes) and under all constraints (steady state, enzyme kinetics, etc.). Solutions to this problem are

considered optimal states.

7.2 Enzyme-efficientmetabolic states use elementaryfluxmodes

The optimization problem in this chapter is to reach maximal objective flux with minimal enzyme invest-

ment. The biological interpretation is that this would lead to the highest growth rate, because it optimizes

the ratio between gains (fluxes) and costs (enzymes). Whenwe solve this optimization problemwithmath-

ematical tools, it is convenient to either find the minimal enzyme investment for a certain flux, or the max-

imum flux for a fixed enzyme investment. Although one could think of different biological explanations

for those two ways to state the optimization problem, mathematically they are equivalent. For the out-

line of the proof that optimal states are elementary flux modes, it is convenient to fix the objective flux to

an arbitrary value (we choose 1) and then minimize the enzyme investment. This leads to the following

optimization problem over the fluxes (v), enzymes levels (e) and metabolite concentrations (c):

minimize
v,e,c

r∑
i=1

hiei (7.1)

subject to: N · v = 0 steady state

∀i : vi = eifi(c) enzyme kinetics

e, c ≥ 0 positive concentrations

vr = 1 fixed objective flux

c ≤ cmax metabolite bounds

where hi are the weights, N is the stoichiometry matrix, ∀imeans for all reactions i, and r is the number

of reactions (with the last reaction representing the objective). This optimization problem states that by

adjusting the fluxes (v), metabolite concentrations (c) and enzyme concentrations (e), the total cost (sum

of costs – hiei – for every reaction) is minimized, while keeping the objective flux constant (any arbitrary

constant can be chosen, here we chose 1). The weights (hi) can be thought of as the size or production

costs of the enzymes (measured, for example, in molecular weight or gene length) We require certain

constraints: (i) the metabolic network needs to be in steady state to avoid built-up of intermediates, (ii)

enzyme kinetics – the flux of each reaction (vi) has to be equal to the enzyme concentration (ei) times

a metabolite dependent term (fi(c)), (iii) all enzyme metabolite concentrations have to be positive, (iv)

the objective flux is equal to 1, and (v) the metabolite concentrations are within their given bounds. The

latter constraint is optional and is mostly necessary when dealing with irreversible kinetics. Reversible

kinetics usually lead to bounded metabolite levels because very high concentrations of products inhibit

the reaction that forms the products.

In this section, we will explain why the optimal state is reached at an Elementary Flux Mode (EFM). One
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important starting point is that, as we have seen before in Chapter 4, convex optimization problems with

only positivity or equality constraints (no other inequalities) lead to an optimal solution at an extreme

points of the feasible solution space, and those extreme points are Elementary Flux Modes. However, the

optimization problem (7.1) is not convex, mainly due to the hyperbolic dependence of reaction rates on

the concentrations of metabolites (fi(c) is usually not linear).

There are several ways to prove that the solution of this optimization problem is an EFM, of which some

are outlined in the papers by Wortel et al. [179] and Müller et al. [180]. Here we will outline a proof by

contradiction: assuming a solution to the optimization problem that is not an EFM and showing that this

leads to a contradiction.

Theorem 1. The flux distribution that maximizes an objective flux over the total enzyme cost in a metabolic

network without additional constraints is an Elementary Flux Mode.

Proof. Assume we have some optimal state that where the flux distribution is not an EFM. Any optimal

solution is associated with a set of fluxes, enzyme concentrations andmetabolite concentrations. Now we

set themetabolite concentrations to the concentrations of the assumed optimal state. Then all metabolite

dependent terms (fi(c)) become constants and we return to a convex problem. As explained in Chapter 9

and Figure 7.1, the optimum of this problem (now in terms of enzyme concentrations and fluxes) is a flux

distribution that is an EFM. But this contradicts our initial assumption that the optimal state from which

we took the set of metabolite concentrations was not an EFM. The proof by contradiction shows that the

optimal state must be an EFM.

7.3 Illustration with an example network

To illustrate the proof, we study a simple network that we have seen previously in Chapter 5 (Figure 7.2),

in which we will now include enzyme kinetics. We will use the factorized rate law as in Chapter 6, but then

generalized for ns substrates and np products (also compare Eq. (3.10) in Chapter 3):

v = e · k+
cat ·

∏j=1
ns

sj/KS,j

1 +
∏k=1

np
pk/KP,k +

∏j=1
ns

sj/KS,j

·
(

1 − e∆rG′/RT
)

(7.2)

See Box 7.A for all detailed rate laws of the example network. We can simplify this equation by combining

the forward catalytic constant, the thermodynamic efficiency factor, the saturation efficiency factor, and

the regulation efficiency factor (if that exists) in a function f(c), which only depends on the metabolites,

and not on the enzyme concentrations. We will below write f for f(c).

vi = ei · fi (7.3)

Now we take vBM = 1 and optimize all fluxes, enzymes concentrations and metabolite concentrations

to minimize the enzyme costs (etot =
∑

i
ei), while satisfying the constraints posed in Equations (7.1), for

different levels of external glucose and standard levels of the other external metabolites. We see that for

different external glucose concentrations, we get different optimal fluxes, enzyme levels and metabolite

levels (Table 7.1).

We notice that the total enzyme needed for a biomass flux of one decreases with the increasing glucose

levels, as we expect. Also, the optimal level of internal glucose increases with increasing external glucose.

This is because the higher external glucose allows for higher internal glucose while still maintaining a

steady glucose influx, and higher internal glucose allows for less enzymes to drive the further metabolism.

Moreover, the fluxes of the solutions do follow an EFM (see Figure 7.2b). We can now reformulate the

problem for only the flux and enzyme levels, while keeping the metabolite levels as they are in the table.
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Figure 7.1: Translation from flux to enzyme space retains EFMs as extreme rays – The top left panel shows
the feasible flux space with the steady state constraints, all fluxes positive (using splitting of fluxes, as
explained in the text, if necessary) and a fixed objective flux. The extreme points here are points where
one flux becomes 0 and are elementary flux modes (see Chapter 5). Here we show that when we have
assumed metabolite concentrations, such as when we keep them at an optimal solution, we get a linear
transformation and the extreme rays aremaintained. Differentmetabolite levels, for example solutions to
different environmental conditions, can lead to different transformations and therefore different optima
(minimal total enzyme), but those are always located at an EFM.

With the metabolite levels in the first row of the table, we can linearly relate the enzyme and flux levels

(with the factors fi), and thereby the extreme rays of the enzyme and flux space will be equal and EFMs,

as pointed out above (see also Chapter 5, Figure 7.1). Optimization in this space will lead to the optimal

flux distributions following an EFM (See Box 7.B for the detailed calculations). As fixing part of the optimal

solution should lead to the same optimal solution, this required the flux distribution of the optimization

over all variables to follow an EFM, as was indeed the case.

We point out two important aspects, using the network (Figure 7.2) as an example. First, it is convenient to

split reversible reactions, such that fluxes are always positive. In this case that means that the reversible

reaction from P to P1 is split into the forward reaction v2 and the reverse reaction v4, which both can

have only positive flux. This splitting makes sure that EFMs are the extreme rays of the flux space (see

Chapter 5). This splitting is purely a mathematical conveniency, we still assume this to be one reaction in

the biological sense, and therefore the kinetic equations of both the forward and the backward reaction

will be exactly the same. Depending on in which direction the flux goes, either one of the reactions will be

positive and the over zero. Any solution with both reactions positive is infeasible, but minimizing enzyme

levels will never lead to such a solution, therefore we do not need to set additional constrains to avoid

this. Second, the feasibility of EFMs can depend on external concentrations. In this network the biomass
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[Gex] etot v0 v1 v2 v3 v4 vBM e0 e1 e2 e3 e4 eBM [G] [P] [ATP] [ADP]
0.01 156.2 5 5 0 9 0 1 54.4 4.4 0 94.4 0 2.9 0.08 15.14 0.05 20.09
0.1 91.3 50 50 99 0 0 1 61.3 11.3 14.2 0 0 4.4 0.13 4.55 0.11 20.09
1 36.2 50 50 99 0 0 1 13.0 8.0 12.5 0 0 2.7 0.60 7.65 0.11 20.09

Table 7.1: Outcomes of the optimization of the example network with standard kinetics, parameter values
and external concentrations (see Box 7.A) for varying levels of [Gex].
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Figure 7.2: States of maximal efficiency in an example model – (A) Example network from Chapter 5 with
added stoichiometry. (B) Three elementary flux modes of this network. (C) Calculated enzyme investment
needed for a biomass flux of 1. At very low concentration of Gex, EFM3 has the lowest cost. But as we
move along the x-axis, at around [Gex] = 0.02 there is a switch to EFM1 and later, at around [Gex] = 0.07,
EFM2 becomes the one with the lowest cost. (D) Specific fluxes (flux divided by total enzyme) associated
with the optimal EFM for different levels of Gex. Note that v1 is not shown as it is always equal to v0. The
rates show a discontinuity when there is a switch from one optimal EFM to another.

reaction (vBM) is the objective flux and there are three EFMs leading to the production of biomass: EFM1

consisting of v0, v1, v2 and vBM, EFM2 consisting of v0, v1, v3 and vBM and EFM3 consisting of v4, v3 and

vBM. However, if P1 is absent in the environment, the uptake flux v4 will always be 0 and therefore EFM3

will not be feasible.
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7.4 Computation of the optimal state

We can now use the result that states of maximal enzyme efficiency are reached at an elementary flux

mode to calculate optimal states in a metabolic network using the following steps:

1. Enumerate the elementary flux modes that include the objective flux

2. Calculate the minimal enzyme for each EFM scaled to an objective flux of 1

3. Compare the EFMs and select the one with minimal enzyme demands

Step 1 is possible for relatively large networks, although usually not for genome scale metabolic networks.

Step 2 is a convex optimization problem as we have seen in Chapter 6 and Step 3 is straightforward.

These three steps together are called Enzyme Flux Cost Minimization, because it is similar to Enzyme Cost

Minimization, but while that is focused on fixed fluxes, Enzyme Flux Cost Minimization simultaneously

finds the optimal fluxes, enzyme and metabolite levels. In this section we will show the method on the

example network of Figure 7.2.

First, we describe the network with the stoichiometric matrix (N) and the concentration vector (c):

N =


1 −1 0 0 0 0
0 2 −1 −1 1 −1
0 2 0 10 0 −100
0 −2 0 −10 0 100

 , c ≡


[G]
[P]

[ATP]
[ADP]

 (7.4)

And with the stoichiometric matrix we can describe the steady state constraints:

d
dtc = N v =


1 −1 0 0 0 0
0 2 −1 −1 1 −1
0 2 0 10 0 −100
0 −2 0 −10 0 100





v0

v1

v2

v3

v4

vBM


=


0
0
0
0

 (7.5)

Now we find the EFMs (for example with EFMtool [181]). It can easily be checked that the following EFMs

are in the nullspace of the stoichiometric matrix:

EFM1 =



5
5
0
9
0
1


, EFM2 =



50
50
99
0
0
1


, EFM3 =



0
0
0
10
11
1


(7.6)

The next step is to perform the convex optimization over the metabolite levels for each one of the three

EFMs. Therefore, we express the enzyme levels as a ratio of the flux and the function f(c), using Equation
7.3. Summing over all enzymes, we get a function for the total enzyme cost (level) as a function of fluxes,

metabolite concentrations and parameters:

etot =
∑

i

ei =
∑

i

vi

fi(c) . (7.8)

We use the standard parameters (Box 7.A) and replace the fluxi by the values given by each EFM. We are

then left with a convex optimization over themetabolite levels, an EnzymeCostMinimization problem as in

Chapter 6. For [Gex] = 0.05 we obtain a total enzyme of 111.1 for EFM1 and of 146.3 for EFM2. That means
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Box 7.A Kinetics of the example network

The detailed kinetic equations for the example model (Figure 7.2) using the factorized rate law (see Equation (7.2)

and Chapters 3 and 6) are:

v0 = e0 · k
+
cat,0 ·

[Gex]/KGex
1 + [G]/KG + [Gex]/KGex

·

(
1 − e

∆rG′
0/RT

)
v1 = e1 · k

+
cat,1 ·

([G]/KG)([ADP]/KADP)

1 + ([P]/KP)([P]/KP)([ATP]/KATP) + ([G]/KG)([ADP]/KADP)
·

(
1 − e

∆rG′
1/RT

)
v2 = e2 · k

+
cat,2 ·

[P]/KP
1 + [P1]/KP1 + [P]/Kp

·

(
1 − e

∆rG′
2/RT

)
v3 = e3 · k

+
cat,3 ·

([P]/KP)([ADP]/KADP)([O2]/KO2 )

1 + ([CO2]/KCO2 )([ATP]/KATP) + ([P]/KP)([ADP]/KADP)([O2]/KO2 )
·

(
1 − e

∆rG′
3/RT

)
v4 = e4 · k

+
cat,4 ·

[P1]/KP1
1 + [P1]/KP1 + [P]/KP

·

(
1 − e

∆rG′
4/RT

)
vBM = eBM · k

+
cat,BM ·

([P]/KP)([ATP]/KATP)

1 + ([BM]/KBM)([ADP]/KADP) + ([P]/KP)(ATP/KATP)
·

(
1 − e

∆rG′
5/RT

)
(7.7)

Note that P is a product twice in v1, as v1 produces 2P. Note that v2 and v4 have a very similar rate equation, but

in opposite directions, and both should only be used in the positive direction. The standard set of parameters

we used for the toy model is all k+
cat,i = 10 s−1 except k+

cat,3 = 0.1 s−1, all ∆rG′◦
i /RT = −440 and all KM = 1

mM. For the external metabolites [P1] = 1 mM, [Gex] = 0.05 mM, [O2] = 0.1 mM, [BM] = 1 mM and [CO2] = 10
mM unless mentioned otherwise.

that for this conditions wewill conclude that EFM1 is optimal, andwe obtain themetabolite concentrations

from the optimization of [G] = 0.08, [P] = 3.93, [ATP] = 0.11 and [ADP] = 20.09. We can next use the rate

equations to calculate the enzyme levels from the fluxes and metabolite levels, using the values for the

parameters and external concentrations.

We can repeat this procedure for different levels of external concentrations and see that the optimal EFM

can change depending on the external concentration (Figure 7.2c). When the optimum shifts to using a

different EFM, there is a discontinuity in the fluxes at the external metabolite concentration (Figure 7.2d).

Many cells show shifts in metabolic strategies depending on the external conditions and with Enzyme Flux

Cost Minimization those shifts could be explained.

Above, Enzyme Cost Flux Minimization was used to find the metabolic state with the maximum enzyme

efficiency. Although in our calculationwe obtain the enzyme concentrations last, it is by enzyme concentra-

tions that cells actually control metabolism. If cells produce enzymes in the concentrations we calculated

and reach a steady state, this state will realize the fluxes and metabolite levels that lead to our optimal

state.

7.5 Translating enzyme efficiency into cell growth rate

In the section above, we learned how to optimizemetabolic states for amaximal overall enzyme efficiency.

Why is this quantity relevant? One reason is that overall enzyme efficiency, according to some simple

reasoning, determines the cell growth rates. If microbes compete by growing fast, their fitness is largely

determined by their momentary growth rate in their respective environment. In such environments, the

biomass/enzyme efficiencywill be under selection, whichmakes it one of the important objective functions

in this book. If higher enzyme efficiency means higher growth rate, and if we have a conversion formula

for this, we can put “growth rate” instead of “overall enzyme efficiency” on the axes of our plots.

Enzyme-efficient metabolic states allow us to compute specific biomass production rates, i.e. the rate of

biomass production per metabolic enzyme invested. If biomass consisted only of enzymes, the ratio ”en-

zyme production rate / enzyme concentration” would give us directly the growth rate. However, biomass

does not only consist of metabolic enzymes, but includes ribosomal enzymes, RNA, DNA, lipids, and other
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Box 7.B Optimal metabolic states in the example network

Weminimize the enzyme investment for vBM = 1 with P1 = 0 (and therefore v4 = 0) for the network in Figure 7.2
(the optimization problem in Equation (7.1)). Assuming all hi = 1, the objective function (

∑r

i=1 hiei = e0 + e1 +
e2 + e3 + eBM. The constraints vBM = 1 and e, c ≥ 0 in Eq. (7.1) are straightforward. The steady state of all internal
metabolites (G, P, ADP and ATP) leads to the following equalities (the steady states of ADP and ATP lead to the

same equality):

Steady state ATP =⇒ 100 vBM = 2 v1 + 10 v3

Steady state P =⇒ 2 v1 + v4 = v2 + v3 + vBM

Steady state G =⇒ v0 = v1

Substituting vBM = 1 and v4 = 0 and solving this set of linear equations, we can write all fluxes as functions of

v2: v0 = v1 = 5 + 5
11 v2 and v3 = 9 − 1

11 v2 (there is only one independent flux in this system). This means we can

draw the feasible flux space on the v2 line and we can express then objective function in terms of v2:

r∑
i=1

hiei = e0 + e1 + e2 + e3 + eBM

= v0/f0 + v1/f1 + v2/f2 + v3/f3 + vBM/fBM

= (5 + 5/11v2)/f0 + (5 + 5/11v2)/f1 + v2/f2 + (9 − 1/11v2)/f3 + 1/fBM

= (5/f0 + 5/f1 + 9/f3 + 1/fBM)︸ ︷︷ ︸
α

+ (5/(11f0) + 5/(11f1) + 1/f2 − 1/(11f3))︸ ︷︷ ︸
β

v2

= α + βv2

(7.9)

The kinetic functions (fi) depend on several parameters (external metabolites Gex, O2, CO2 and P1, catalytic con-

stants, Michaelis constants and Gibbs free energies) and the variables [G], [P], [ATP] and [ADP]. That means that

once we have a set of internal metabolite concentrations c, the enzyme levels in the objective function can be

written as a constant times the flux: ei = vi/fi, with fi a constant. For a set of parameters, α and β are positive

or negative depending on the choice of c. It is clear that when we minimize this objective function by adjusting

v2, we will always have an optimum at v2 = 0 (when β is positive) or v2 = 99 (when β is negative). v2 = 99 is the

maximum of v2 because then v3 = 9 − 1
11 v2 = 0, and higher values of v2 would lead to negative values for v3.

In conclusion, the optimum cannot be at a value of 0 < v2 < 99. If there would be an optimum with 0 < v2 < 99,
we can determine c and calculate whether β > 0 to find a lower objective value at v2 = 0 or v2 = 99, contradicting
that we started with an optimum. Only if β = 0 there is a range of optima, but this requires very precise parameter

values. v2 = 0 and v2 = 99 correspond to the EFMs of this system (Figure 7.2).
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Figure 7.3: Translation of enzyme-specific biomass rate to growth rate – (A) Both from experimental data
and a cell-optimization point of view, the ribosomal fraction of the proteome increases with the growth
rate, while the metabolic fraction decreases. (B) This leads to a hyperbolic dependency of the growth rate
on the biomass production rate per amount of enzymes.

compounds. Therefore we need a formula for converting biomass/enzyme efficiency into cellular growth

rate.

Mathematically, a cell’s growth rate is given by µ = vBM/cBM, where vBM is the biomass production rate

(biomass produced per cell volume and time) and cBM is the biomass amount per cell volume. If a cell con-
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Figure 7.4: Optimal growth rates of the two EFMs for different levels of the external metabolite Gex (using
Equation 7.10)

sisted only ofmetabolic enzymes (more precisely, of the enzymes described in ourmodel) the biomass/en-

zyme efficiency KBM = vBM/henz would directly describe the cellular growth rate. Since that is not the

case, we need to convert between henz and cBM. The metabolic protein fraction decreases with the growth

rate, leading to a hyperbolic dependency of the growth rate on the biomass production rate (Figure 7.3).

We may use the empirical approximation henz/cBM = fprot(a − b µ), where fprot = 0.5 is the fraction of

proteinmass within the cell drymass and the parameters a = 0.27 and b = 0.2 h were fitted to describe the

metabolic enzyme fraction in proteomics data, assuming a linear dependence on growth rate [19]. This

yields the conversion formula (see also [178]):

µ = a fprot vBM

henz + b fprot vBM
. (7.10)

This formula has been used to convert the minimal enzyme cost per biomass flux for different external

concentrations in the toy model (Figure 7.2c) to the maximal growth for each EFM (Figure 7.4).

7.6 Application to a model of E. coli’s central metabolism

In the previous sections, we saw that finding enzyme-efficient metabolic states can be done by iterating

through all possible EFMs and performing the enzyme cost minimization on each one. We demonstrated

it on a toy model comprising only 3 EFMs. In Wortel et al. [178], this method was scaled up and applied

to a more realistic model covering the central metabolic network, as shown in Figure 7.5A. For this larger

network, there are 1566 biomass-generating EFMs. Each reaction is assigned to a single enzyme along

with its molecular weight, k+
cat,KM, and ∆rG

′◦, and follows the generalized factorized rate law as in Equa-

tion (7.2). These parameters are listed in Appendix section B.1, and the full procedure for obtaining them

is described in Wortel et al. [178], along with other model parameters.

First, Wortel et al. [178] wanted to study the effect of environmental conditions on the growth rate of E.

coli, and see whether themodel would be able to recapitulate empirical phenomena. The external glucose

concentration was set to 100 mM and oxygen levels were varied between 1 µ and 10 mM. They selected

4 flux modes as representatives (max-gr, ana-lac, and aero-ace, which are EFMs, and exp, which is based

on experimentally measured fluxes) , and calculated their predicted growth rates in each condition, using

Equation (7.10). The results are shown in Figure 7.6. When focusing on a single flux mode, one can see

that as the oxgyen level increases so does the growth rate. The increase saturates at some point, which

depends on the flux modes and on the kinetic parameters in the model. Indeed, it has long been known

that growth rate dependence on a limiting substrate concentration has this specific shape – a relationship
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Figure 7.5: Model of central metabolism in E. coli bacteria. (A) The metabolic network of the E. coli model
used byWortel et al. [178]. (B) A Venn diagram showing statistics of biomass-producing EFMs in themodel
and their reliance on oxygen.

generally called the Monod curve .

In this specific example, it is interesting to see the Monod curves of the different EFMs, and try to under-

stand the differences. First, the EFM called ana-lac (red curve), is a flat line. This makes since because cells

using this EFM do not utilize the oxidative phosphorylation system and therefore do not require oxygen at

all for growth. max-gr, on the other hand, is very sensitive to the level of oxygenmainly because of the high

flux going through oxidative phosphorylation. It is also the EFM with the highest growth rate in standard

oxygen levels (0.21 mM), even when taking all the other ∼1500 EFMs into account (not shown here).

7.7 Concluding remarks

In this chapter we considered the metabolic network of a cell - and enzyme levels, metabolite concentra-

tions, and fluxes as the state variables - and studied its maximally efficient states. Finding such states can

be difficult because fluxes, metabolite concentrations, and enzyme levels are tightly coupled: metabolite

concentrations determine enzyme efficiencies, enzyme efficiencies determine optimal enzyme levels, and
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Figure 7.6: Monod curves (cell growth rate as a function of oxygen level) computed using themodel shown
in Figure 7.5 – Each curve was computed using one of the EFMs and the associated (oxygen-dependent)
enzyme demands. The ana-lac strategy (anaerobic growth with lactate secretion) does not use oxygen,
therefore it curve is flat.

enzyme levels determine fluxes and metabolite concentrations, which in turn determine enzyme efficien-

cies. To find an optimal state, all variables need to be optimized at the same time, which is a non-linear

optimality problem with (possibly) many local optima. In small toy models, solutions can be found numer-

ically, but for large detailed models, the computational effort becomes enormous. Instead of simplifying

the problem (as in the previous chapters) we here used the insight that (in models without extra flux

bounds) the optimal solutions must be EFMs.

Biologically, it is enzyme levels rather than fluxes that are regulated directly (by transcriptional regulation),

while metabolite concentrations and fluxes respond dynamically. But from a functional point of view, we

may see this differently: we may first think of a task (a flux to be realized) and then ask how this flux can

be performed optimally.
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Problems

Problem 7.1 Effect of oxygen concentration

Consider the model in Figure 7.2. What would be the qualitative effect of a change in oxygen concentra-

tion on the enzyme cost of the three EFMs and on the choice of the optimal strategy?

Problem 7.2 States of maximal growth rate

How can cells achieve a state of maximal growth rate? One approach to think about this phenomenon

is to consider organisms that have limited resources at their disposal for enzyme synthesis and that try

to optimize the enzyme concentrations to maximize their growth rate. As an example we will look at

a simple branched pathway as a very simplified representation of a metabolic network that produces



120 Optimization of metabolic states

biomass for a cell.

With the model details given below, optimize the specific pathway flux for the production of P (which is

v3/eT ) for the following cases:

1. e1 = 0
2. e2 = 0
3. e1 = e2

4. The above cases (e1 = 0, e2 = 0 and e1 = e2) but now with S1 = 50.
5. Can you form an hypothesis about which distributions of enzyme investments can be solutions for

the optimal specific flux in this branched pathway? (Hint: Think about which option was best when

S1 = 10 and which option was best when S1 = 50. Which distributions of resources between e1 and

e2 was best from the provided options? And what hypotheses can you propose for the more general

case?)

Here are the model details and some hints. The pathway flux is the flux through reaction v3, which we

can think of as biomass production. All reactions are catalyzed by enzymes, and this enzymes have to

be constructed by the cell. To optimize growth we want to look at the optimal specific pathway flux,

i.e. the flux per invested protein or J/eT where J is the pathway flux and eT the total enzyme cost.

In this example J = v3 and eT = e1 + e2 + e3 (we assume that the cost for each protein is equal).

We also assume steady-state, because we do not want the intermediate metabolite to increase in the

cell. In this case that means v3 = v1 + v2. To optimize a ratio, we can fix either of the two components

without loss of generality. In the case of this exercise it is easiest to fix eT = 1 andmaximize the pathway

flux v3. Finally, wemake assumptions about the enzyme kinetics. Here, we assumemass-action kinetics,

meaning the rate is the enzyme concentration times the forward rate constant times the substrateminus

the backward rate constant times the product: v = e(k+s − k−p). For the exercise, use the following

parameters: S1 = 10, S2 = 10, k+
1 = 2, k−

1 = 1, k+
2 = 3, k−

2 = 1, k+
3 = 1, k−

3 = 0.1, P = 0.



Chapter 8

Principles of cell growth

Ohad Golan, Hollie J. Hindley, Hidde de Jong, Markus Köbis, Elena Pascual Garcia, and Andrea Weiße

Chapter overview

◦ A comprehensive description of fundamental growth laws inmicrobial growth, elucidating the core

principles that govern biological growth patterns.

◦ A detailed exploration of the contrasts between coarse-grained and fine-grained modeling is pre-

sented, offering insights into the varying levels of detail that each approach encompasses.

◦ A thorough breakdown of the key assumptions in the modeling of metabolic systems is provided,

underlining the foundational premises that are crucial for accurately representing these complex

systems.

◦ The process of deriving fundamental growth laws by modeling key assumptions is meticulously

demonstrated, enabling a clear understanding of how theoretical constructs translate into biolog-

ical realities.

8.1 Introduction

A key feature of living systems is that they are able to grow and reproduce. The reproductive success

in a given environment defines the fitness of a living system. The study of the growth of bacteria and

other microorganisms is crucial for better understanding their capacity to cause diseases in humans or

for better exploiting their use in biotechnological or environmental processes. Beyond their interest for a

variety of applications, bacteria and other microorganisms have shown themselves ideal model systems

for investigating fundamental questions on the relation between growth, fitness and characteristics of the

environment.

One of the first to systematically and quantitatively study the growth of bacterial cultures was Jacques

Monod in the 1940s. He performed so-called diauxic growth experiments, in which bacteria were cultured

in a medium containing two different limiting carbon sources. He showed that the bacteria first deplete

one carbon source before starting to assimilate the second carbon source. The order in which the primary

and secondary carbon source were consumed was determined by the growth rate they support: the pre-

ferred carbon source allows the culture to grow at a higher rate. Further work on the molecular basis of

diauxic growth led to the discovery that cells inhibit the expression and activity of functions for the use

of secondary carbon sources when a preferred carbon source is present, a global regulatory mechanism

known as carbon catabolite repression [182, 183].

Monod characterized bacterial growth by means of batch culture experiments in a well-defined growth

121



122 Principles of cell growth

medium allowing bacteria to reach a state of balanced growth, where the accumulation of biomass can

be described by a single constant, the exponential growth rate. Together with the chemostat, a device

allowing continuous culture of microorganisms at a predefined growth rate [184], these methods have

become standard in microbial physiology. They notably underlie the discovery of a number of so-called

growth laws, relating the growth rate to a variety of properties of the physiology of growing bacteria. The

growth laws are conserved across different organisms and a broad range of experimental conditions.

Here, we list three well-known growth laws [185, 186]:

1. Dependency of the growth rate on nutrient availability [187]: In his characterization of bacterial growth,

Monod discovered the first growth law. He observed that the growth rate of bacteria depends upon the

nutrient concentration in the medium in a hyperbolic fashion (Fig. 8.1A).

2. Correlation between growth rate and nutrient uptake rate [188]: In continuous cultures, the growth rate

was shown to vary linearly with the nutrient uptake rate (Fig. 8.1B). The slope of this linear relation is

called the biomass yield and the offset the ‘maintenance energy’, as it is assumed to be derived from

the energy spent on processes required to maintain the basic processes of the cell, in the absence of

growth [189].

3. Correlation between growth rate and cellular composition [190, 191]: In 1959, Schaechter, Maaløe and

Kjeldgaard showed that RNA, DNA and the number of nuclei in Salmonella typhimurium linearly correlate

with the growth rate. Later, it was further shown that other physiological parameters, such as the mass

fraction of ribosomes in growing populations, also linearly correlatewith the growth rate [191] (Fig. 8.1C).

Initially, it was believed that the correlation between ribosomal mass fraction and growth was strictly

positive, however, Scott et al. [192] showed that when growth is inhibited through translation-inhibiting

drugs, growth rate and ribosomal mass fraction exhibit a negative (near-)linear relation.
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Figure 8.1: Bacterial growth laws – (A) Monod growth law: growth rate dependency on nutrient availability
(data from [187]). (B) Correlation between growth rate and nutrient uptake rate [Data from [193]]. (C)
Correlation between growth rate and cellular composition [Data from [191]]

The conserved nature of the growth laws has led scientists to ask whether there are fundamental princi-

ples governing bacterial growth. To answer this question, different types of mathematical models have

been developed. One approach aims at integrating all known molecular constituents of the cell and the

reactions involving these constituents into a big model, an in-silico copy, or ‘digital twin’, of the cell. Such

models, known as fine-grained models, can be useful to predict emergent phenotypes, but they are diffi-

cult to construct andmaintain, and their complexitymakes it hard to grasp certain principles that underpin

growth. In this chapter, we will focus on coarse-grained models of bacterial growth. Rather than assem-

bling individual reactions in a bottom-up manner, these models are based on the top-down definition of

a limited number of basic cellular functions or processes involved in growth, described by appropriate

macro-reactions (Fig. 8.2). Coarse-grained models are smaller and therefore easier to construct and an-

alyze. The lack of molecular detail can make their predictions less accurate, but their simplicity allows a

focus on how basic cellular functions and their interactions shape bacterial growth. How much detail is

included in a model depends on the specific scientific question asked, and similarly, models may vary in

their underlying assumptions. Oftentimes, assumptions are based on biochemical principles governing
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intracellular reactions, on physical limitations faced by cells, on optimality principles, or on a combination

of these.

In this chapter, we show how to understand and, ultimately, how to develop coarse-grained models of

cellular growth. We present a number of coarse-grained models with increasing levels of granularity.

The models have been chosen to also represent a variety of commonly used assumptions, for example,

based on growth rate maximization or on phenomenological or mechanistic constraints. Despite these

differences, however, models we discuss generally recover the basic growth laws, and we show how the

latter can be derived from solving two of the simplest coarse-grained models. The goals of this chapter

are:

1. To enable the reader to understand and analyze any model of microbial growth from the literature.

2. To enable the reader to develop their own coarse-grained model of a metabolic system that is directed

at their specific scientific question.

3. To provide the reader with a new perspective on modeling of complex systems and specifically the

biological cell.

8.2 Fundamental modeling assumptions of microbial growth

The models of microbial growth we consider here are based on fundamental assumptions that follow

from biochemical and biophysical constraints. In this section, we discuss and mathematically define as-

sumptions that are found, explicitly or implicitly, in most coarse-grained models of microbial growth. The

assumptions are formulated in an abstract manner to hold for any self-replicating biological system, ir-

respective of the specifics of the underlying molecular mechanisms. In the next section, we use these

assumptions to construct increasingly complex models of microbial growth and show how the latter can

be used to derive the experimentally observed growth laws presented in the introduction of this chapter.

The growth of microorganisms consists of the uptake of nutrients from the environment and the conver-

sion of these nutrients into newmicrobial cells through a number of coupledmetabolic processes (Fig. 8.2).

This description brings out the self-replicating or autocatalytic nature of microbial growth: cells transform

nutrients from the environment into new cells. In what follows, we consider growth on the population

level, that is, an increase in the total amount of cells or, equivalently in many situations, an increase of the

biomass of the population. This leads to the well-known model of microbial growth, where the change in

biomass over time is proportional to the amount of biomass (Fig. 8.3A):

dB
dt = λB, (8.1)

where t [h] denotes time,B in gram dry weight [gDW] the biomass and λ [1/h] the population growth rate.
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Figure 8.2: Coarse grained modelling of cellular growth – Compared to genome-scale FBA and whole-
cell models (Chapters 4, 5, 9, coarse grained models zoom out of the molecular detail and focus on key
processes.
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Figure 8.3: Coarse grained models of metabolic systems with increasing complexity – (A) A self-replicating
system. (B) The simplest description of a metabolic system: coupled catabolic and anabolic reactions. (C)
A metabolic system that can catabolize two different nutrient sources. (D) A catabolic system requiring
two substrates to grow: x and E.

If the growth rate is constant, the solution to Eq. (8.1) describes exponential growth of the biomass:

B = B0eλt, (8.2)

where B0 [gDW] is the initial biomass at t = 0.

The growth rate is a key parameter that is often used as a proxy for the fitness of microorganisms. It is

dependent on the metabolic processes, that is, how a cell utilizes the nutrients to synthesize new biomass

(self-replication). The simplest description of metabolism is that it takes up a nutrient, breaks it down

into metabolites (catabolism), and then utilizes these metabolites to produce new biomass (anabolism)

(Fig. 8.3B). Catabolic and anabolic processes comprise a variety of biochemical reactions that are carried

out by different sets of proteins and enzymes. The reaction rates of these processes are limited biochem-

ically and biophysically. We formulate these limitations as modeling assumptions and define them as

mathematical constraints, four of which we briefly review below.

8.2.1 Conservation of mass and quasi-steady-state assumption

Dry biomass is often a more readily measurable quantity than cell volume. The latter relates absolute

abundances of cell components to their intracellular concentrations. Yet, because bacterial cells have

beenobserved tomaintain approximately constant cell density across various growth conditions [194, 195]

(though transient exceptions have been observed at the single-cell level [196]), biomass can be regarded a

proxy for volume and is therefore assumed to be proportional to cell volume in many growth models. All

models considered in this chapter are based on the assumption of constant cell density and approximate

the concentration x of a cellular component x (we use normal font for cell components and italic font for

their concentrations) by its absolute abundance divided by the cell mass.

According to the law of mass conservation, the change of mass is equal to the inflow minus the outflow

of mass. As a consequence, the change in concentration of a cell component, for example a metabolite

pool, is determined by the sum of the rates of the reactions consuming and producing this cell component

(Fig. 8.4A). The mass balance for any cell component x is given by the following equation:

dx
dt =

∑
y

ry→x −
∑

k

rx→k, (8.3)

where ry→x denotes the rate of the reaction converting cell component y into cell component x (production

of x), and rx→k the rate of the reaction converting cell component x into cell component k (consumption of

x). Typically, cell component concentrations have units mg/gDW or mmol/gDW, so that rates of metabolic

reactions are expressed in units mg/(gDW h) or mmol/(gDW h).

In the simple system shown in Fig. 8.3B, there are two reactions: one converting the nutrient source N into

a metabolite X and one utilizing the metabolite for the synthesis of biomass. According to (8.3), the flux

balance of metabolite pool x is given by dx/dt = rn→x − rx→B .
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A key assumption is that intracellular concentrations are in quasi-steady state. This means that cell com-

ponent pools remain constant:

dx
dt = 0, for all cell components x. (8.4)

The quasi-steady-state assumption simplifies the mathematical analysis of the system significantly and

holds for balanced growth of the microbial population. In this chapter, we focus mostly on situations

in which the quasi-steady-state assumption applies, but also give an example of a model with metabolic

dynamics. In metabolic modeling, the rates of reactions at steady state are called fluxes, denoted by the

symbol J . With the quasi-steady-state assumption, Eq. (8.3) becomes∑
y

Jy→x =
∑

k

Jx→k (8.5)

that is, for every cell component, the sum of production fluxes equals the sum of consumption fluxes. In

the example system, we have Jn→x = Jx→B .

8.2.2 Proteome allocation assumption

The biochemical reactions breaking down nutrients into intracellular metabolites, and the reactions uti-

lizing these metabolites for the synthesis of new biomass, do not occur spontaneously. The reactions

are catalyzed mostly by proteins complexes, in particular metabolic enzymes and ribosomes. In coarse-

grained models, well-defined sets of biochemical reactions are grouped together into macro-reactions.

The cell components that are necessary to catalyze the individual steps of a macro-reaction are grouped

together into a corresponding so-called proteome sector. A proteome sector includes mostly proteins

that catalyze metabolic reactions but also ribosomes catalyzing the reaction of protein biosynthesis. Pro-

teins constitute most of the biomass of the cell [197]. Therefore, as a first approximation, the sum of the

proteome sectors equals the total biomass of the growing population measured in units of g (Fig. 8.4B):∑
r∈{x→y}

Pr = B, (8.6)

where Px→y is the proteome sector catalyzing the macro-reaction that transforms cell component x into

cell component y. The proteome sectors as defined above are extensive quantities, summed over the

entire growing population, like the total biomass B. For the models, we are rather interested in intensive

quantities, the amount of a proteome sector relative to the total amount of biomass (protein), correspond-

ing to protein concentrations or protein fractions. Dividing the left-hand and right-hand sides of Eq. (8.6)

by B, we thus obtain: ∑
r∈{x→y}

pr = 1 (8.7)

where px→y is the fraction of the proteome converting x into y, defined by px→y = Px→y/B. Proteome

fractions are dimensionless and sum to one.

In the simple example system in Fig. 8.3B, we distinguish two macro-reactions: a catabolic reaction and

an anabolic reaction (biomass synthesis). We therefore define two proteome sectors, corresponding to

enzymes and ribosomes, respectively, with fractions pn→x and px→B , respectively. In later examples in the

chapter, the catabolic and anabolic processes are further broken down into smaller macro-reactions and

so are the proteome sectors.

8.2.3 Mathematical description of reaction fluxes

The rate atwhich a reaction is converting one cell component, e.g., ametabolite, into another is determined

by the proteome fraction, the concentrations of the substrates of the reaction and possible regulation by

other cell components in the system. While mass-action kinetics provide a principled framework to de-

velop rate equations for biochemical reactions, in practice, various approximations based on mechanistic
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assumptions are often used to obtain simplified equations [198]. Below there are a few examples of rate

laws defining the fluxes in coarse-grained models:

1. Excess substrate and no allosteric interactions. The simplest relation of the flux J to the relevant proteome

sector is linear, such that

Jx→y = px→y βx→y, (8.8)

where βx→y is a parameter describing the efficiency of proteome sector px→y in generating a flux from

x to y. This expression assumes substrate x is in excess and disregards any regulation of the flux by

allosteric interactions of the enzymes and other cell components.

2. Limited substrate and allosteric interactions. A more complex relation is obtained when the substrate is

in excess and allosteric interactions involving a cell component n play a role in the modulation of the

flux. The expression of the flux is multiplied by two regulatory functions f(x) and g(n) describing the
modulation of the flux by the substrate and the allosteric cell component, respectively:

Jx→y = px→y βx→y f(x) g(n). (8.9)

It is important to note that that both f(x) and g(n) return values between 0 and 1, and that the flux

remains linear in the proteome fraction. Typically, a Michaelis-Menten relation is taken for the effect

of the concentration of substrate x on the flux, such that f(x) = x/(kx→y + x) (Fig. 8.4D). When the

concentration x is in excess, such that x � kx→y , the function f(x) becomes approximately 1. Other
types of regulatory functions can be used depending on the macroreactions concerned and the growth

conditions.

8.2.4 Volume and surface area assumptions

The intracellular volume as well as the surface area of the cell are limited (Fig. 8.4C). Obviously, the total

volume occupied by the components of the cell, in particular proteins, cannot be larger than the cell vol-

ume. As such, the total volume of the cell is larger than the sum of the volume of the proteome sectors

that are functioning inside the cell plus some constant volume taken up by other cell components such as

DNA. This gives the following constraint:

Cell volume ≥
∑

r∈{x→y}

prvr + v0 (8.10)

where vx→y is the volume of proteome sector px→y and v0 is some constant volume filled by other cell

components. Similarly, the total surface occupied by proteins and lipids making up the cell membrane

has to equal the surface area of the cell. This constraint gives:

Cell surface area ≥
∑

r∈{x→y}

prsr + l0 (8.11)

where sx→y is the surface area of proteome sector px→y and l0 is the surface area of the lipids in the cell

membrane.

8.3 Growth laws derived from basic modeling assumptions

In the following section, we will build upon the fundamental assumptions discussed earlier to construct

models of microbial metabolism with increasing complexity. We will introduce additional assumptions as

necessary to solve each model, and use them to derive one of the growth laws presented in the introduc-

tion of this chapter that have been experimentally observed in microorganisms.

Example 1 - Basic metabolic system with saturating substrate concentrations

In this example, wewill use the basicmetabolicmodel to derive the relationship between the concentration

of ribosomes and the growth rate in microorganisms.Themost basic metabolic model involves the uptake
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Figure 8.4: Fundamental assumptions in the modeling of microbial growth – (A) Conservation of mass and
steady-state assumption: The change in concentration of a cell component is equal to the incoming flux
minus the outgoing flux. At steady state, the concentration of the cell component is constant. (B) Proteome
allocation assumption: the proteome is divided into different proteome sectors. The number of proteome
sectors in a model depends on the model granularity. The sum of all the proteome sectors always equals
1. (C) Volume and surface area assumption: The volume of the cell is limited and is filled with intracellular
cell components such as proteins. The sum of the volumes of the intracellular cell components is equal to
the cell volume. Similarly, the surface area of the cell is limited and contains membrane cell components
such as lipids. The sumof the surface areas ofmembrane cell components is equal to the cell surface area.
(D) Example of flux assumption according to Michaelis-Menten kinetics: the reaction x → y is carried out
by proteome sector px→y. The maximal rate is reached for saturating substrate concentrations and is
determined by the size of the proteome sector.

of a single nutrient from the environment, the catabolism of that nutrient into a metabolite x, and the

use of this metabolite in anabolic processes to synthesize biomass (Fig. 8.3B). This model consists of two

reactions and two proteome sectors. According to the proteome allocation constraint, the sum of the

proteome sectors must sum to one (according to Eq. (8.7)):

pn→x + px→B = 1. (8.12)

For simplicity, we assume that the rate of each reaction is proportional to the allocation of the proteome

to that reaction (according to Eq. (8.8)), so that:

Jn→x = pn→xβn→x; Jx→B = px→Bβx→B . (8.13)

Themass conservation constraint, with the assumption of a steady state for metabolite x, gives (according

to Eq. (8.5)):

Jn→x = Jx→B . (8.14)
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Finally, due to conservation of mass, the biomass synthesis flux equals the growth rate:

λ = Jx→B . (8.15)

Solving equations (8.12)-(8.15) gives a prediction for the growth rate:

λ = βx→Bβn→x

βx→B + βn→x
. (8.16)

Solution (8.15) for the growth rate is based solely onmechanistic assumption - that is, assumptions that are

based on the mechanistic properties of the biochemical reactions in the cell. In this case, that is that the

fluxes are linear to the relevant proteome sector. Because we have taken a steady state approximation

and the rates of the two reactions must be equal, the growth rate is determined by the relative values of

the catalytic constants.

Using this model, we can now derive the relationship between the concentration of ribosomes and the

growth rate. Combining Eq. (8.12) and (8.14) gives:

λ = px→Bβx→B (8.17)

This shows that the growth rate is linearly proportional to the anabolic sector. Given that the anabolic

sector is composedmostly of ribosomes, this fits well with the experimentally observed linear relationship

between the concentration of ribosomes and the growth rate, which was first described by Schaechter et

al. [190] and later confirmed by Bremer et al. [191]. It is important to notice that this relation is due to the

assumption that the biomass synthesis flux is linear in the ribosomal proteome sector.

In summary, we have derived the linear relationship between the concentration of ribosomes and the

growth rate using only basic assumptions about the properties of the biochemical reactions in the cell and

the conservation ofmass. This relationship is one of the experimentally observed growth laws inmicrobial

systems.

Example 2 - Growth on two nutrient sources

In this example, we consider a metabolic system that grows on two different nutrient sources, n1 and n2

Fig. 8.3C. We use the fundamental assumptions outlined in Section 1.2 and an additional assumption of

growth-rate maximization to demonstrate how cells may exhibit catabolite repression - a phenomenon in

which cells utilize only one nutrient even when multiple nutrients are available in the environment [183].

The metabolic system in this example catabolizes both nutrient sources to the same metabolite x, but at

different efficiencies. The anabolic reaction is the same as in Example 1. There are now three proteome

sectors in this model: two for catabolism of the nutrients and one for anabolism. Thus, according to the

proteome allocation constraint (Eq. 8.7), we have:

pn1→x + pn2→x + px→B = 1. (8.18)

As before, we assumea linear correlation between reaction rates and proteome sector fractions (according

to Eq. (8.8)). The different efficiencies of the catabolic sectors is represented as βn2 > βn1. Applying the

mass conservation assumption for metabolite x, combined with the steady state assumption, gives

Jn1→x + Jn2→x = Jx→B . (8.19)

The growth rate is again equal to biomass synthesis flux, as in Example 1:

λ = Jx→B . (8.20)

Given that there are more variables than constraints in this example, solving Eqs. 8.18 - 8.20 reveals that
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there is no unique solution for the growth rate, but rather a solution space with one free variable pn1→x:

λ = βx→Bβn2→x

βx→B + βn2→x
+ pn1→x

(
βn1→x − βn2→x

βx→B + βn2→x

)
βx→B . (8.21)

The solution shows that themetabolic systemhas a decision tomake regarding howmuch of the proteome

to invest in sector pn1→x. To solve this system, we introduce an additional assumption of growth rate

maximization – that is, to maximize its fitness, the metabolic system maximizes the growth rate in a given

condition. In this example, to maximize the growth rate, the cell uses only the more efficient catabolic

system, setting pn1→x = 0 and the solution for the growth rate is as in example 1. The model predicts

that the cells will only utilize the nutrient source with the higher efficiency, even if both nutrient sources

are available in the environment. This solution fits the catabolic repression experimental result presented

in the introduction in which in which the metabolic system represses the use of a less efficient nutrient

source in favor of a more efficient one.

Example 3 - Multiple energy generating pathways

In this example, we focus on a classic question in cell physiology known as overflowmetabolism [199, 200].

Within the cell, two primary energy-generating pathways exist: the oxygen-requiring respiration pathway

and the oxygen-independent fermentation pathway. It is established that, in the presence of oxygen, the

respiration pathway fully oxidizes available nutrients, rendering it more nutrient-efficient in contrast to

the fermentation pathway [201]. Utilization of the fermentation pathway is marked by the secretion of

byproducts, such as acetate in E. coli or ethanol in yeast, making it inherently wasteful. Intriguingly, ex-

perimental observations reveal a counterintuitive phenomenon: even under oxygen-rich conditions, cells

often opt for the less efficient fermentation pathway. Under growth rates surpassing a critical threshold,

the secretion rate of byproducts, indicating an increased reliance on the fermentation pathway, exhibits

a linear rise [202, 203, 204]. This counterintuitive preference for fermentation has long presented a pro-

found question in bacterial physiology.

Based on previous studies [202], we present a coarse-grained model to elucidate this observed phe-

nomenon (Fig. 8.3D). The model postulates steady-state growth on a single nutrient source, denoted as n.

This nutrient is taken up from the environment, and channeled towards biomass through the proteome

sector pn→B . Additionally, it serves as a precursor for energy generation, either through the respiration

pathway catalyzed by proteome sector pn→r or the fermentation pathway catalyzed by proteome sector

pn→f . Thus, according to the proteome allocation constraint (Eq. 8.7), we have:

pn→B + pn→r + pn→f = 1. (8.22)

Diverging fromearliermodels presented in this chapter, ourmodel necessitates twoprecursors for biomass

generation: energy and a carbon precursor. Carbon assimilation is coarse-grained into the biomass gen-

eration pathway n → B, while energy is generated through the energy-producing pathways of respiration

n → r and fermentation n → f . Consequently, two mass balance equations are requisite – one for carbon

flux and another one for energy flux. The carbon mass balance equates the carbon uptake rate coming

from nutrient uptake JC
in to the carbon fluxes utilized for cell biosynthesis JC

n→B , fermentation JC
n→f and

respiration JC
n→r:

JC
in = JC

n→B + JC
n→f + JC

n→r. (8.23)

Similarly, the energy balance equation asserts that the energy generated by fermentation JE
n→f and res-

piration JE
n→r equals the energy utilized for the biomass synthesis reaction JE

n→B :

JE
n→B = JE

n→f + JE
n→r. (8.24)
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Consistent with prior examples in this chapter, we maintain a linear correlation between reaction rates

and proteome sector fractions (as per Eq. 8.8).

Both fermentation and respiration reactions utilize a carbon substrate and produce energy, with a key

distinction lying in their nutrient utilization efficiency. The ratio of carbon utilized in these reactions to

energy generated is expressed as:

JE
n→r = εn→rJ

C
n→r; JE

n→f = εn→fJ
C
n→f . (8.25)

Given that the respiration pathway exhibits higher nutrient efficiency than the fermentation pathway:

εn→r > εn→f .

Concluding the model description, we incorporate the cellular requirements for growth precursors (en-

ergy and carbon) and the proteome. Under carbon limitation, the proteome fraction dedicated to cell

biosynthesis pn→B exhibits a linear growth rate dependence [202, 205, 192, 206]:

pn→B = p0 + σn→Bλ. (8.26)

The growth rate correlates with the flux of growth precursors, adhering to a fixed stoichiometry of the

metabolic network [207, 208]:

JE
n→B = σEλ; JC

n→B = σCλ. (8.27)

Another key assumption of the model posits that, while the respiration pathway is more nutrient-efficient,

utilizing less nutrients per energy unit generated, the fermentation pathway is more proteome-efficient,

requiring a smaller proteome fraction per energy unit generated. This assumption is embodied in the

efficiency parameters of the reaction fluxes: βn→f > βn→r.

To validate the efficacy of our model in capturing the experimentally observed linear increase in acetate

secretion with high growth rates, we endeavored to predict acetate secretion as a function of growth rate.

The acetate secretion rate is governed by the flux through the fermentation pathway, represented by

Jac = SacJ
C
n→f , where Sac is determined by the involved stoichiometry. Solving Eqs 8.22 - 8.27 for acetate

secretion yields an expression that increases linearly with the growth rate:

Jac = Sac

εn→f
βE(pE − λ(σx→B + σE

βx→r
)). (8.28)

where βE = βn→rβn→f

βn→r−βn→f
and pE = 1 − p0. The negative value of βE , arising from the higher proteome

efficiency of the fermentation pathway, results in a positive slope and a negative intercept on the Jac-axis.

The model provides a good quantitative fit to the experimental observation [202]. The critical growth rate

λcr , signifying the growth rate at which the cell activates the fermentation pathway, occurs when Jac = 0,
giving λac = pE

σn→B+σE/βn→r
.

It is crucial to highlight the key assumption underlying this solution, which lies in the relative efficiencies

of the energy-generating pathways. At high growth rates, the cell encounters inhibition not only in its

ability to rapidly extract energy from the nutrient but, more significantly, it is constrained by the available

proteome. Consequently, the cell shifts to utilize the more efficient fermentation pathway.

It is also noteworthy to identify the assumptions overlooked by the model. For instance, the model ex-

cludes the proteome sector for nutrient uptake, coarsely integrating it into the biomass biosynthesis and

energy generation pathways. While this assumption is reasonable for growth on a single nutrient, a model

consideringmultiple nutrients with varying uptake efficiencies necessitates the inclusion of proteome sec-

tors for nutrient uptake. Further analysis of the model can be found in [202, 209].
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Figure 8.5: Schematic of the dynamic growth model – The model focuses on key cellular processes: nutri-
ent uptake, transcription and translation. Enzymes (shown in blue and dark green) import andmetabolize
extracellular nutrient (shown in orange), which yields energy (yellow). Availability of energy impacts tran-
scription and translation, however, it is assumed that energy consumption is dominated by translation.
The different species of mRNA compete for ribosomes (light green), and their translation consumes en-
ergy. Assuming that biomass is dominated by protein, the total rate of translation determines the rate of
growth (lower right). Four classes of proteins are modelled: ribosomes, nutrient transporters, enzymes
and other house-keeping proteins (red).

8.4 Mechanistic links between cellular trade-offs, gene expres-

sion, and growth

This section presents a coarse-grained cell model that describes the dynamic adaptation of global mecha-

nisms driving the growth of bacterial cells. Compared to the models previously described in this chapter,

this model is dynamic, i.e. not based on steady-state assumptions, and it has a higher level of granularity.

It is also based on explicit mechanisms, which allows extension with additional mechanisms of interest,

for example, the effects of antibiotics or of heterologous gene expression on cellular growth.

Energy metabolism and protein production are the main pillars of biomass production and cell growth,

and form the basis of the growth model. A set of ordinary differential equations describes the dynamic in-

terplay of (i) nutrient internalization and catabolism, (ii) transcription, and (iii) and translation (see Fig. 8.5).

A key assumption of the model is that biomass is dominated by proteins, and so the cellular growth rate

corresponds to the total rate of protein synthesis via translation. All processes are part of a feedback

loop in which the final protein products act as catalyzers of the model reactions, creating a self-replicating

system.

In its basic form, the growthmodel includes 14 intracellular variables: internal nutrient, si; energymolecules,

a; and four types of proteins along with their corresponding free (mx) and ribosome-bound mRNAs (cx).

Of the four types of proteins considered, there are three groups of catalyzing molecules: transporters (et),

metabolic enzymes (em) and ribosomes (r), and one group of housekeeping proteins (q). As the model

does not assume steady state, the different reactions are defined in terms of reaction rates instead of

reaction fluxes. A simplified description of the main reaction rates of the model is shown in Table 8.1. For

details on all reactions and parameters, readers are referred to the supplementary information of [210].

In what follows, the focus will be on the conceptual aspects underlying the prediction of cellular growth

rate, and some examples of model applications.

Building on the assumptions of mass balance and proteome allocation described in Section 8.2 of this
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chapter, the model centers around three fundamental constraints, namely (i) a finite pool of cellular en-
ergy that fuels protein biosynthesis, (ii) a finite pool of ribosomes for which mRNAs compete for transla-

tion, and (iii) a finite cell mass. As a result, themodel predicts the dynamic allocation of internal resources

and its emergent impact on cellular growth rate without the need to assume growth rate maximisation.

Description Reaction Reaction rate

Nutrient internalisation s → si et · vts
(Kt+s)

Nutrient metabolism si → nsa em · vmsi
(Km+si)

Transcription ∅ → mx ωx · a
(θx+a)

Ribosome binding mx + r ↔ cx kb ·mxr, ku · cx

Translation cx + nxa → x+mx + r cx · γ(a)
nx

Table 8.1: Summary ofmainmodel reactions and their accompanying rates. The four proteins represented
in the model are denoted in the reactions by x, x ∈ r, et, em, q, γ(a) is the rate of translational elongation,
defined as γmaxa

Kγ +a
, and nx is the average length of a protein molecule in amino acids. The parameter ns

represents nutrient quality and determines the yield of energy per catabolized nutrient.

8.4.1 Model definitions

Growth rate and biomass synthesis Based on the assumption that biomass is dominated by protein, and

other contributions are negligible, the biomass B of a cell can be calculated by summing over the coarse-

grained proteome,

B =
∑

x

nxx+ nr

∑
x

cx, x ∈ r, et, em, q, (8.29)

which sums over all proteins (x) and mRNA-bound ribosomes (cx), with nr and nx denoting the lengths of

proteins in terms of amino acids. Equation (8.29) is equivalent to the mass balance assumption described

in section 1.2.1 of this chapter. As a consequence, the proteome allocations, defined by φx = x/B for

x ∈ {em, et, r, q} sum to 1, i.e.
∑

x
φx = 1.

Similar to the previous examples in this chapter (Section 8.3), the model correlates the growth rate with

biomass production, which depends on translating ribosomes and their translation elongation rate γ(a).
Importantly, the rate of elongation depends on the energy produced in the catabolic processes described

in themodel, which dynamically couples protein synthesis withmetabolism. Defining the number of trans-

lating ribosomes Rt =
∑

x
cx, the change in cellular biomass over time becomes

dB

dt
= γ(a)Rt − λB. (8.30)

The second term, λB, accounts for dilution via redistribution ofmass to daughter cells at division. In home-

ostatic conditions, that is when B is in steady state and so dB
dt

= 0, it then follows that λ∗ is proportional

to the rate of protein synthesis. To define growth dynamically,

λ(t) := γ(a)Rt

B0
, B0 > 0. (8.31)

Setting B0 to the typical biomass of a cell in mid-exponential growth ensures that cells will have a steady-

state biomass of B∗ = B0.

Rate of translation In actively growing bacteria, protein synthesis, and in particular translation-associated

processes, account for a major part of the energy budget. The model assumes a simplified mechanism

to derive the dependence of the translation rates on the energy levels of the cell. It is assumed that each

elongation step of translation consumes a fixed amount of energy (Figure 8.6),

and further that intermediate reactions are in quasi-steady state. It can then be shown that the net rate
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Figure 8.6: Mechanistic derivation of the translational elongation rate – The model assumes that each
elongation step consumes a fixed amount of energy. In a first step, energy reversibly binds the mRNA-
ribosome complex, upon which elongation takes place. Once the peptide reaches it’s final length, the
protein is released and ribosome and mRNA are freed up.

of translation elongation takes the form

γ(a) = γmaxa

Kγ + a
. (8.32)

Here, γmax denotes the maximal rate of translation elongation per ribosome andKγ the energy threshold

of half-maximal elongation. For any protein x, the rate of its translation is then given by

νx(cx, a) = cx
γ(a)
nx

, (8.33)

where cx denotes ribosomes bound to mRNA of type x and division by nx accounts for the number of

elongation steps to take place for the production of one px.

Rate of transcription Themodel assumes that transcription is energy-dependent, but that its consumption

is negligible compared to that of translation. Analogous to translation, under the assumption of fixed

energy consumption per elongation step, the rate of transcription takes the same shape and is defined by

ωx(a) = ωxa

θx + a
, x ∈ r, et, em. (8.34)

Here, the energy threshold of half-maximal transcription, θx, is specific for each proteome sector x, which

dynamically links the proteome allocations φx with different growth conditions. In particular, θr � θx for

x 6= r ensures that the ribosomal sector increases in rich growth conditions (cf. growth laws in Fig. 8.1C).

In addition, the model assumes that the transcription of household genes is negatively auto-regulated to

maintain near constant levels across different conditions. Therefore

ωq(q, a) = wqa

θq + a
· I(q), with I(q) := 1

1 + (q/Kq)hq
, (8.35)

where I is the auto-inhibition function with thresholdKq and Hill-coefficient hq.

8.4.2 Model predictions

The model recovers the bacterial growth laws through the automodulation of finite cellular resources in

response to changing environments. It robustly fits empirical data (Fig. 8.7), suggesting the growth laws

are an emerging property of the constraints integrated into the modelling approach.

The model predicts a hyperbolic dependence of the growth rate on nutrient availability as described by

Monod’s law (Fig. 8.7 inset), derived using the conservation ofmass assumption andwhen φr � φq. Energy

is created from the metabolism of internalized nutrients and determines the rates of transcription (ωx(a))
and translation (γ(a)). In the absence of antibiotics, the latter is proportional to the growth rate of the cell

as described in Eq. (8.31). As the nutrient quality is increased, more energy will be available and therefore

more transcription will occur. Due to the relationship between transcription thresholds (θr � θx), the

transcription of ribosomes is increased comparatively more, leading to an increase in the ribosomal mass

fraction as seen in Fig. 8.7.

In a fixed nutrient condition, inhibiting translation by the addition of an antibiotic increases intracellular
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Figure 8.7: Mechanistic cell model – Experimental data [coloured circles] and model simulations [lines]
depicting the relationship between growth rate and cellular composition. The data describes the riboso-
mal fraction of the proteome φr in different growth conditions. Each colour represents a different media
composition, with increasing drug-free growth going from red to green. The numbers within the circles
indicate the addition of the antibiotic chloramphenicol to the growth media at a certain concentration [in
µM ]. Although this antibiotic inhibits translation, an increase in φr can be observed through all media
compositions. Themodel fit to the experimental data demonstrates the capacity of this model to describe
two of the growth laws. (Inset) Model simulation. Besides the composition, varying the amount of ex-
ternal nutrient in the growth media increases the steady-state growth rate up to a saturation point. This
reproduces Monod’s growth law.

energy levels as fewer ribosomes can translate. Again, with θr � θx, this energy increase leads to a

proportionally larger increase in transcription of ribosomal mRNAs and so to a larger φR. In contrast to

the scenario without antibiotics, fewer ribosomes can actively translate and therefore the growth rate will

be lower. Consequently, a negative dependence of φR and growth rate arises.

8.4.3 Applications

Due the coarse-grained modelling of mechanisms and the use of non-steady state dynamics, the model

lends itself to modular extension for a range of applications. For example, to reproduce the negative

correlation between growth rate and ribosome content amid translational inhibition (Fig. 8.7), the model

was extended to account for inhibitory actions of the antibiotic chloramphenicol on ribosomes. Similarly,

mechanisms that account for drugs with other modes of action could also be included. Further, in [210],

it was shown that the model can be extended to study a number of applications:

Firstly, the model was extended to account for expression of a heterologous gene circuit and predict con-

straints between heterologous circuit expression, circuit function, and the growth of the host. This has

applications in areas such as chemical production in biotechnology, where host-circuit interactions are

not understood and where synthetic circuits have to operate robustly in different growth conditions. In

this context, the model can serve to quantify host-circuit interactions for a more host-aware design of

synthetic gene circuits.

In another application, themodel’s ability to dynamically predict growth rate emergently from intracellular

mechanismswasused as a proxy for evolutionary ‘fitness’ to studywhen gene regulationwas evolutionarily

stable. This was done by augmenting the cell model with population growth, assuming that all cells of a

population are identical, and modelling competitive interactions between a resident and mutant strain.

Finally, in [210] it was shown how to use the model to study specific mechanisms within a wider cellular

context. With the example of gene-dosage compensation, where the effects of a gene deletion can be

reduced by increasing the expression of a paralogous gene, it was shown how and when global regulatory
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mechanisms caused compensation. The example showed that the constraints underpinning the growth

laws can also cause global negative feedbacks on proteins affecting growth.

8.5 Concluding remarks

In this chapter, we delved into the intricate world of coarse-grained modeling of microbial growth. We be-

gan by describing key experimental evidence that has led to what is known as bacterial growth laws. These

laws are derived from growth measurements and are deemed to be conserved for various organisms. We

thenmathematically described the fundamental assumptions necessary to model bacterial growth. Using

basicmodeling systems, we showed how to analyze such a system and derive fundamental conclusions for

bacterial growth. These models reproduce the bacterial growth laws, providing a link between theoretical

models and experimental results. Finally, we introduced a more complex model that includes various cell

processes such as translation, transcription, and the cellular growth process. Overall, this chapter high-

lights the power of coarse-grainedmodeling in unraveling the complexities of microbial growth and offers

a framework for exploring a wide range of biological questions.

While this chapter lays a foundation for research on various topics in biology, many areas remain to be

explored. For example, the effects of changing environmental conditions such as dynamic changes in

nutrient availability, acidity, or temperature are not discussed. Furthermore, various cellular processes

such as protein degradation and membrane assembly are not covered in the chapter. Including these

processes in a coarse-grained model could potentially lead to the discovery of other growth laws.

In the next chapter, you will explore models that further refine the biological cell and bridge between

coarse-grained models and genome-scale models. These models incorporate several of the assumptions

discussed here but utilize more knowledge of the metabolic network.
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Examples of coarse-grained models:
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nomics, Molecular Systems Biology, 2009 [215]. Influential article illustrating the explanatory capacity of

coarse-grained models.

◦ Weiße et al., Mechanistic links between cellular trade-offs, gene expression, and growth, Proceedings of

the National Academy of Sciences of the USA, 2015 [210]. Article describing how growth laws for ribosomes

can be recovered from coarse-grained model of microbial growth.

◦ Basan et al., Overflow metabolism in Escherichia coli results from efficient proteome allocation, Nature,

2015 [202]. Article describing howproteomeallocation constraints can account for overflowmetabolism

in bacteria.

◦ Zavřel et al., Quantitative insights into the cyanobacterial cell economy, eLife, 2019 [216]. Example of the

use of coarse-grained models for explaining physiological principles underlying growth of less-studied

(photosynthetic) microorganisms.

Problems

Problem 8.1 Linear chain model

A system is composed of a set of 2 linear reactions: nutrient ->metabolite x1 ->metabolite x2 -> biomass.

Using the same approximations as in example 1, solve for the growth rate. What would be the solution

for a system composed of N reactions? Show that the least efficient reaction determines the growth

rate.

Problem 8.2 Linear chain model with Michaelis-Menten rate laws

Solve example 1 when the nutrients are not available in excess. UseMichaelis-Menten relations for both

reactions. First, derive the concentration of metabolite x as function of catabolic sector proteome size.

What is the minimal size for the catabolic sector? What happens if the catabolic sector is smaller than

that? Next, determine the proteome allocation that maximizes the growth rate.

Problem 8.3 Linear chain model with Michaelis-Menten rate law for the catabolic reaction

Solve Example 2 when the nutrients are not available in excess. Use Michaelis-Menten relations for the

catabolic reaction. At what point does the metabolic system switch to use the other nutrient source?

Problem 8.4 Simple model with allosteric regulation of catabolic reaction [217]

A metabolic system is growing in an environment with one nutrient available. The system allosteri-

cally regulates its catabolic reaction according to the concentration of metabolite x. Assume Michaelis-

Menten kinetics for all reactions. What is the growth rate as function of catabolic sector proteome size?

This is a complex solution, don’t solve it analytically and plot a numerical solutions instead. What is the

catabolic sector proteome size that maximizes the growth rate?

Problem 8.5 Growth on a single nutrient that is degraded to both energy and biomass precursors

Consider themodel from section 1.3, example 3. Solve themodel for the nutrient uptake rate as function

of growth rate for:

1. Growth rates above the onset of acetate secretion

2. Growth rates below the onset of acetate secretion

Problem 8.6 Simulating models numerically

Simple coarse-grained models can generally be solved analytically. However, for models with a higher

level of granularity, like the one presented in this section, reaching an analytical solution to the model

equations is highly complex. Computational approaches that allownumerically solving high-dimensional

systems are of great value.

1. With the help of the provided code and following the detailed description of the ODE system in the
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SI of [210], implement and solve the system of ODEs. Using this implementation, reproduce Monod’s

law, as seen in the inset of Figure 8.1.

2. The nutrient composition of the growth media is the main driver of increasing growth rates. Simulate

the model to steady state for different values of nutrient qualities. What model species are most

impacted by an increase in nutrient quality?

3. As seen in Figure 8.1, the addition of a drug that inhibits protein synthesis results in an upregulation of

the ribosomal fraction φR. Reproduce Figure 8.1. How do the observed results relate to your answer

in question 2?
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Chapter 9

Resource allocation in complex cell

models

Hugo Dourado, Anne Goelzer, Pranas Grigaitis, Wolfram Liebermeister, and Elad Noor

Chapter overview

◦ Resource balance analysis models are cell models based on three basic constraints formulated at

genome-scale: stationary fluxes (balancing production and consumption fluxes, uptake and excre-

tion fluxes, as well as compound dilution by cell growth); flux coupling constraints relating fluxes to

the amounts of catalyzing enzymes (or other machines); and density constraints, limiting molecule

amounts in cell compartments, or molecule concentrations.

◦ These constraints narrow down the solution space predicted by FBA towards more physiological

solutions

◦ Large resource allocation models build on the same principles, and have been implemented as

different variations (RBA models, ME-models, and pc-models).

9.1 Overcoming the limitations of FBA inpredicting phenotypes

In the previous chapters, we have discussed two principal approaches to modeling biochemical systems.

To keep the number of variables low, but with intention of well-parametrizing themodel, one can construct

small, coarse-grained models of growing cells (Chapter 8). On the contrary, Flux Balance Analysis (FBA)

models can accommodate a very large number of variables (Chapter 5), making them an excellent choice

to model metabolic networks at genome-scale.

The small, coarse-grained models are a very suitable platform for investigation of base principles of life.

Likely the best example to illustrate this is the work of Douwe Molenaar and co. [218], where a self-

replicator model was used to proposed that the low-yield, or substrate-inefficient (”wasteful”) metabolic

strategies are adopted as a consequence of these pathways being more efficient in terms of protein use,

compared to the high-yield pathways. In other terms, the growth output of the ”wasteful” strategy per unit

protein is higher than the ”efficient” one. Thus we now believe that fermentation of glucose, often called

under an umbrella term ”overflowmetabolism”, will take place in many organisms if the substrate in their

environments is abundant enough.

However, we know that the chemistry of life is extremely diverse, and even such a familiar concept as fer-

mentation can become complicated. Take three representatives of the tree of life: a bacterium Escherichia

coli, budding yeast Saccharomyces cerevisiae, and mammalian, say, human cells. All three exhibit overflow

139
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metabolism - even when enough oxygen is available in the environment - yet the underlying biochemistry

tells us that E. coli ferments glucose into acetic acid, S. cerevisiae - into ethanol, and human cells - into lac-

tate. Bringing more contrasts on the table, there might be extreme differences in a single taxon already:

some yeasts, for instance, will never produce ethanol when oxygen is present; some of them have lost the

ability to do respiration at all over the course of evolution. This might sound like playing a trivia game,

but in many cases, meaningful modeling of complex biological systems requires both taking and making

biochemical insight. Therefore, when we aim not only to uncover the underlying principles, but also to

learn biochemistry, FBA models have an upper hand.

Yetwe already know that the predictions of canonical FBAmodels are limited to substrate-efficientmetabolic

states. Continuing with the example of the overflow metabolism, FBA models would predict E. coli or S.

cerevisiae to respire onminimalmediumwith glucose as themain carbon source – irregardless of themaxi-

mal flux of glucose into the cell. Thus the prediction of substrate-inefficientmetabolism using FBA over the

years used to rely on introducing additional, mainly empirical (e.g. maximal oxygen uptake), constraints

onto the system [145]. Moreover, we can impose only linear constraints in FBA models, and this greatly

reduces our options.

Overall, we frequently seek to take the advantageous points of both ”schools of modeling”, however, this is

wherewe need to start doing compromises. In the ideal world, the self-replicatormodels from the Chapter

8 would have to be extended with explicit kinetics and thermodynamic constraints to obtain a detailed cell

model. However, the number of variables would increase tremendously, and non-linear optimization is

very inefficient already past even small systems. On the contrary, we could try to advance on the FBA-type

models by introducing the concepts of protein economy (Chapter 7) at genome-scale. Following our best

understanding, these, again, would constitute non-linear relationships (e.g. enzyme kinetics), yet large-

scale non-linear programming is not a viable option either. Thus simplifications are currently necessary

to keep linearity (and convexity) to solve optimization problems for large-scale models.

So can we make large-scale models tractable? If we linearize all formulae, then instead of a biconvex or

convex/concave problem, we obtain a linear problem (a bit like FBA); more precisely, a system of linear

equalities and inequalities that define a set of feasible states. This set is a polytope, and linear optimality

problems on this set can be solved easily. More specifically, to model metabolism in a growing cell, we

need to consider dilution of metabolites in the growing cell volume, or simply - the growth rate µ of the

cell.

9.1.1 Why growth rate?

Under the assumption of the balanced growth, the number of copies of every metabolite in the cell is

doubled between two consecutive cell divisions. If metabolites are described by their concentration, dilu-

tion by growth can be effectively modeled of every metabolite by a ”consuming reaction”, with a flux given

by vdil = µ c, the compound concentration multiplied by the growth rate. By adding these hypothetical

dilution reactions to the metabolic network, we obtain a new stationarity condition N v = µ c that con-

nects the vectors of fluxes and compound concentrations, and in which the growth rate µ appears as a

parameter. For each choice of the parameter µ, we can ask whether a feasible steady growth state – i.e. a

feasible combination of v and c exists. Furthermore, the feasible combinations (µ,v, c) form a convex set,

with possible solutions (v, c) for low values of µ and no solutions above a critical value µmax, the maximal

possible growth rate for ourmodel. Finding this critical value as well as the corresponding optimal fluxes v
and compound concentrations c is relatively easy, and can be done by bisection: solving a series of Linear
Programming problems (checking for potential solutions (v, c) for different values of µ).

9.1.2 Replacing complex kinetics by catalytic constraints

The main downside of this approach is that all relationships between models variables need to be lin-

earized. This concerns, most importantly, all catalyzed processes, inwhichwe assume a linear dependence

between catalyzed flux and catalyst (enzyme or machine) concentration, but ignore the dependence on
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the concentrations of substrates, products, cofactors, or additional regulators. What does this mean in

practice? As we know from Chapter 3, typical enzymatic rate laws have the form v = e k(c): the rate v is
proportional to enzyme level e and enzyme efficiency k, which is given by a kinetic rate law k(c), a nonlin-
ear function of the metabolite concentrations. Depending on the context, k is also called catalytic rate or

apparent kcat. The kinetic rate laws k(c) have typical shapes, as described in Chapter 3.

To linearize the expression for v, while keeping the dependence on e, we need to replace the relationship

k = v/e by a fixed number, and so k becomes a model parameter. If the metabolite concentrations

were known (experimentally, or from kinetic models under optimality assumptions, see Chapter 6), the

value of k could be computed. Otherwise, it can also be determined experimentally, by measuring v and

e and setting k = v/e [24], which is feasible for a limited number of enzymes, however. Obviously, in

reality, neither c nor k will be fixed and given, but for our linearized model, we need to assume this. This

holds both for metabolic reactions (with enzymes as catalysts) and for macromolecular reactions (with

molecular machines as catalysts). Under this assumption, we can replace all kinetic constraints by two

linear constraints on the enzyme. If we consider coefficients k and k
′
to approximate enzyme kinetics in

the forward and backward direction, respectively, the flux the enzyme e catalyzes should satisfy −e k
′

≤
v ≤ e k. We set k

′
= 0 for irreversible reactions, and, for simplicity reasons, we usually assume k = k

′
for

reversible reactions, unless kinetic measurements are available that suggest otherwise. This relationship

can be formulated as enzyme capacity constraints in order to replace the kinetic rate laws in the FBAmodel.

By writing down such constraints for each enzyme in the model, we can couple the metabolic fluxes with

the demand for enzymes, needed to operate these fluxes.

9.1.3 Overview of existing FBA extensions

The linearization approach described above can be successfully used for very large models, making the

genome-scale models of resource allocation possible. What we commonly refer to as ”resource allocation

models” therefore formalize the mathematical relationships defining the interactions and allocation of

resources between the cellular processes to describe optimal resource allocation using constraint-based

models. All these relationships take the form of linear, growth-rate dependent equalities and inequalities,

and, when linearized, form a convex feasibility problem [219, 220, 221].

By itself, the idea of constraining metabolic models to represent limited metabolic capacity of cells is not

a new one. There are two ways to approach this budgeting problem: ”protein budgeting”, where a fixed

amount of protein needs to be partitioned in the optimal manner (maximizing growth), and ”resource

budgeting”, wheremodels include both the protein budgeting and the descriptions of demands for protein

synthesis. However, ”protein budgeting” problems assume that investments in protein production follow

the budget, and not vice versa.

Some extensions of FBA account for extra empirical constraints on the total concentration ofmetabolic en-

zymes (FBA with molecular crowding, or FBAwMC [222]), or on proteome sectors (Constrained-Allocation

FBA, or CAFBA [223]). While these can predict metabolic states more reliably, the empirical constraints

come as model assumptions and thus cannot be understood by the models themselves. In these models,

the primary assumption is that the cell phenotype is obtained by genetic regulations, and the main goal

and utility of genetic regulation can be interpreted as ways of saving resources. Thus in many cases when

we predict cell phenotype maximizing growth, we find predictions in good agreement with the experi-

mental observations. Therefore, resource allocation models extend and embed the ideas of proteome

partitioning beyond frameworks like CAFBA and GECKO [224], or representing metabolic capacity limita-

tions beyond FBAwMC.

Currently, there are three main implementations of large-scale resource allocation models: Resource Bal-

ance Analysis (RBA) [225], Models of Metabolism and Macromolecular Expression (ME-models) [226] and

proteome-constrainedmodels (pc-models) [39]. All these implementations are formalized as LP feasibility

problems at fixed growth rate. Originally, ME-models were considered as an extension of M-models, by

including predictions for mRNA, protein, and ribosome levels. Importantly, they do not consider density
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constraints that, for instance, RBA does. Therefore, limitations on the capacity of exchange fluxes (as in

FBA) are necessary to obtain a solution.

9.2 Types of constraints in resource allocation models

As indicated above, fine-grainedmodels of resource allocation build on the genome-scale metabolic mod-

els (GEMs) to encompass all the reactions that potentially could happen in a metabolic network. The tech-

nical advance, when constructing such models, is to impose sets of additional constraints onto GEMs to

couple the metabolic fluxes with investment into metabolic pathways (production of enzymes). To the

date, different implementations of this concept were proposed to predict optimal resource allocation in

different microorganisms [227].

The general description of these constraints in fact is the same as for small, coarse-grained self-replicator

models, only the number of individual constraints increases. Moreover, every of the constraints described

can be split into a number of constraints, considering only a subset of fluxes in themodel (e.g., fluxes taking

place in a certain cell compartment). Although the precise formulations vary, resource allocation models

build on three principal types of constraints (Figure 9.1):

(1) Mass-conservation constraints

(2) Flux coupling constraints

(3) Compartment capacity, or protein density, constraints

Alongside these three major classes there is another set of constraints, which we could call ”environment”

constraints - these correspond to, e.g. the composition of growth medium, biomass composition at at

given growth rate µ, etc. They are implemented by setting target values for amounts and/or fluxes defining

a viable cell in a given (or several) environmental conditions, but they are not structural constraints. These

constraints usually are added ad hoc and do not need to bear any functional meaning per se. We will now

expand on the three types of constraints used in resource allocation models; note that the description is

not exhaustive and peculiarities may vary among different formulations.

9.2.1 Mass-conservation constraints

Themass-conservation constraints define themetabolic network (stoichiometry and relationbetweenfluxes).

The initial building blocks of these extendedmodels are GEMs, and thus themetabolic network stoichiom-

etry is already there; what remains to be defined are the protein turnover processes. We consider 4 types

of protein turnover reactions in fine-grained resource allocationmodels: protein synthesis, folding, degra-

dation and dilution-by-growth. So, for every protein present in such a model, we add these four reactions:

two of them, translation and degradation, include the stoichiometry of amino acids needed for its trans-

lation and released during degradation based on the protein sequence. The reactions which represent

either protein folding modeled as the conversion of the ”unfolded” protein species into the ”folded” ones,

and the dilution-by-growth is modeled as a sink for the ”folded” protein species (”folded” → ∅).

9.2.2 Flux coupling constraints

Next, the flux coupling constraints couple themetabolic fluxeswith protein usage: usually, the usage scales

with the catalytic turnover value kcat of the enzyme. In this step we have to collect the kinetic information

(in most cases, kcat values), which are used as model parameters. We establish the coupling between

fluxes and protein synthesis by setting v = kcat e η, where e is the enzyme concentration and 0 < η ≤ 1
is an efficiency term summarizing the effects of reaction thermodynamics, enzyme saturation, and pos-

sibly small-molecule regulation. The value for η can be either assumed or fitted from experimental data,

and when η = 1, the enzyme is considered to operate at its maximal rate. Coupling constraints are intro-

duced to couple both (i) the metabolic reactions with enzyme usage (as described above) and (ii) protein

turnover reactions with the respective macromolecular machinery (e.g. sum demand of ribosomes for

protein translation, vtranslation = [Ribosome] × kcat,ribosome). The sheer number of the kinetic parameters
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Figure 9.1: Overview of biological components and mathematical constraints in large-scale resource allo-
cation models – A Resource Balance Analysis (RBA) model is taken as an example. (A) Typically, an RBA
model describesmetabolisms andmacromolecule production in a growing cell (yellow blocks). Precursors
from metabolism are needed to produce macromolecules, and some macromolecules serve as enzymes
to catalyze metabolic reactions. In addition, macromolecules are diluted and are localized in cell compart-
ments. (B) Sets of mathematical constraints. The variables and processes described by an RBA model
must satisfy a number of constraints, include mass-balance constraints (between production, degrada-
tion, and dilution of compounds); capacity constraints (relating process velocities to the concentrations
of catalysts); density constraints (on the total amount of compounds in a cell compartment); and possibly
empirical physiological constraints on any types of ”target variables”, to ensure realistic models.

needed for formulating the coupling constraints in the fine-grained models requires the modeller to con-

sider different assumptions and simplifications when building and parameterizing thesemodels, as briefly

discussed below.

The number of processes described in a fine-grainedmanner directly translates to the number of reactions

and metabolites in the model. For instance, transcription is modelled explicitly in the ME-models [226].

The modellers’ decision is key here: under assumption that transcription and translation form a linear

pathway with fixed scaling factors (i.e. there is a fixed ratio of peptides translated per mRNA transcribed),

the flux throughmRNA translation reaction can be computed post-optimization based on the flux through

the protein translation reaction. Explicit modelling of transcription would require describing processes of

mRNA transcription, processing, export from nucleus, and then cytosolic degradation after the mRNA is

translated – for each of the transcripts, with precise stoichiometry and a new set of coupling constraints.

The next issue is kinetic parametrization of these fine-grainedmodels. We currently can use only very sim-

plified kinetics in the models (flux coupling v = kcat e η), and simplify such factors as enzyme saturation

and thermodynamic driving force into a single value of factor η. Two approaches are used to deal with

this, as a large fraction of parameters are not even available. First, condition-dependent kinetic param-

eters (”apparent catalytic constants”, kapp) are fitted from experimental (mostly quantitative proteomics)

data (setting keff = kcat α, where 0 < α ≤ 1) with a value α chosen to match predicted enzyme abundance
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Box 9.A Protein abundance versus concentration in resource allocation models

Herewewould like to include a relevant note for interpretation of the output of the fine-grained resource allocation

models. Both the classical FBA and these extensions do not consider ”metabolite concentration” as a concept:

optimization variables are all fluxes. Frameworks discussed in this chapter model protein synthesis from amino

acids and energy equivalents explicitly, with a typical flux dimension ofmmol gDW −1 h−1 (as for any other fluxes).

To compute the amount of protein that has to be produced in the steady-state growth, we should consider the flux

balance for the protein e: vsynthesis,e = vdegradation,e + vdilution,e, or, rewritten with the respective parameters,

vsynthesis,e = (kdeg,e + µ) e. Here, kdeg,e is the degradation rate for the protein e, and µ is the specific growth

(= dilution-by-growth) rate. The [e] in the rewritten equation holds dimension of mmol gDW−1, which is protein

abundance, rather than concentration.

The predicted amount of protein in cells can be compared to experimental measurements in two ways. First

option is to convert abundance to concentration using the relationship between the cell volume and dry weight

(e.g. VgDW = 1.7 mL gDW −1 in Saccharomyces cerevisiae, [17]). Alternatively, proteome mass fractions are

a popular unit in label-free mass spectrometry-based protein quantification, a popular method in quantitative

microbiology. Respectively, predicted proteome mass fractions can be inferred by converting protein abundance

inmmol to g, and scaling to the protein content in dry cell biomass. Here, it is important to consider the conversion

factors (protein content in dry biomass). E. coli maintains rather constant protein content in dry weight across

growth rates (ca. 0.55 (g protein) gDW −1) [229, 230]. On the contrary, the protein content is known to vary in S.

cerevisiae as a function of growth rate [17].

and experimental measurements. Otherwise, for the enzymes with measured kcat values, we can assume

that enzymes work at their maximal rate, i.e. the saturation function η = 1. Then the model computes

the minimal protein requirement to sustain the flux through the metabolic reactions. The comparison of

minimal predicted vs. observed protein abundance can represent the ”apparent saturation”, or ”overcapac-

ity” of enzymes. For instance, it is common in yeast S. cerevisiae that the flux and not protein expression

varies across conditions, and the relationship between predicted and measured expression can suggest

the nature of the observed protein expression [228].

9.2.3 Protein density constraints

The final layer of information in the fine-grained resource allocation models is a set of protein density

constraints. These constraints describe the [upper] limit of cellular process(es), e.g. maximal protein ca-

pacity of a compartment. These constraints are formulated as weighted sums of protein abundance, and

usual weighing multipliers are proportional to the molecular weight of the protein. Usually, the density

constraints are expressed in terms of (usually maximal) mass, area, and volume of the compartment (e.g.

”what is the maximal mass the mitochondrial proteins can take up in gDW of cells?”). Based on the bio-

logical interpretation of the constraints, we formulate the weighing multipliers to represent either of the

metrics (mass/area/volume) that every protein occupies.

The capacity constraints can be both equality and inequality constraints: more frequent are the latter

(usually defining the ”upper limit” of, e.g. amount of protein targeted to mitochondria). However, some

cell properties should be described through equality constraints: one of these is the protein density of

biomass, defining the ”target” protein translation per gram dry cell biomass.

9.2.4 Interpreting the consequences of the additional constraints

We have briefly discussed what types of additional constraints need to be implemented to extend FBA

models to account for cellular resource allocation, and now let us recap on what these sets of rules mean

in biological terms. The constraints described above shall couple the metabolic fluxes with the production

of enzymes that operate these functions, so the model has to produce amino acids and generate ATP in

order to use them for protein translation. Moreover, the enzyme demandwill be coupled with the produc-

tion of the macromolecular machines required to produce, fold, and degrade these enzymes (ribosomes,

chaperones, and proteases, respectively), requiring the same building blocks (see Chapter 2). These con-



Resource Balance Analysis (RBA) models 145

straints therefore formalize a self-replicating molecular system in balanced growth subject to different

structural constraints:

1. the metabolic network has to produce all metabolic precursors necessary for biomass production and

mass conservation must hold for all intracellular molecule species - i.e. intracellular metabolites and

molecular machines.

2. the capacity of each type of molecular machine must be sufficient to ensure its function, i.e. to catalyze

chemical conversions at a sufficient rate;

3. the intracellular density of compartments and the occupancy of membranes must not exceed the de-

fined limits.

As highlighted before, the biological interpretation of the additional constraints discussed above is rather

universal for different implementations of resource allocation models, with minor deviations in terminol-

ogy and/or formulation. To illustrate how resource allocation models are built from conventional GEMs,

and how the respective models are formalized in mathematical terms, in the following we will consider

one of the popular formulations of resource allocation models in more depth.

9.3 Resource Balance Analysis (RBA) models

Resource Balance Analysis (RBA) has been developed as (and is considered to be) a flexible and generic

modeling framework which describes the functioning of an organism using the most relevant set of lin-

ear equality and inequality constraints, described in general terms in Section 9.2. As a consequence, an

RBA model includes all known metabolic reactions coupled to relevant cell processes with major protein

investments (production of biomass precursors; including, but not limited to protein translation, protein

folding, protein transmembrane transport, and protein degradation). Where applicable, circumstantial

information can be included into the model to establish the dependency of enzyme activity on metal ions,

vitamins, and/or cofactors. Which metabolic reactions and cell processes are regarded as relevant may

vary between organisms and is a modeler’s choice.

9.3.1 Building a draft RBA model

The software package RBApy [231] contains all the routines needed to build and simulate RBA models.

In order to build a new RBA model, it takes a genome-scale metabolic network in SBML format [232] as

an input, together with additional information to formulate the additional constraints described in the

previous section. Different types of biological data, are needed to build an RBA model for an organism:

◦ Amino acid sequences formetabolic enzymes andmacromolecularmachines (e.g. ribosomes and chap-

erones),

◦ If applicable, stoichiometry of known cofactors (e.g. metal ions),

◦ Efficiencies of metabolic enzymes,

◦ Molecular weights and localization of proteins (for density constraints),

◦ Any empirical constraints on concentrations or fluxes (”targets”, see previous section).

The software routine first extends the input GEM to include the description of protein turnover in the

cell. The software extracts information from the input files on (i) protein sequences and cofactors, (ii) the

subunit stoichiometry of protein complexes, and (iii) protein localization (using information from public

databases such as UniProt). Using this information, reactions corresponding to protein synthesis, folding,

degradation, and dilution by growth are added. Finally, the software maps enzymes to the reactions they

catalyze and to the proteins they consist of, and the output of the routine is a draft (uncalibrated) RBA

model.

9.3.2 Mathematical description of a RBA problem

Notation. Below AT refers to the transpose of the matrix A. Rn
>0

∆=
{
x ∈ Rn |xi > 0 for all i ∈ {1, · · · , n}

}
,



146 Resource allocation in complex cell models

R>0
∆= R1

>0, Rn
≥0

∆= {x ∈ Rn |xi ≥ 0 for all i ∈ {1, · · · , n}} and R≥0
∆= R1

≥0.

In a standard RBA model, we consider balanced growth (see Chapter ??), that is, the average state of

a cell in a cell bacterial population growing exponentially at the specific (constant) growth rate µ ≥ 0,
i.e. the amount of produced biomass per biomass per cell per unit of time. Our simulated average cell is

composed of different molecule species:

1. ny types of molecular machines, which can be subdivided further into ne enzymes and transporters

involved in the metabolic network E ∆= (E1, . . . ,Ene ) at the concentrations e ∆= (e1, . . . , ene )T and

metabolic fluxes v ∆= (v1, . . . , vne )T ; and nm macromolecular machines M ∆= (M1, . . . ,Mnm ) involved
in non-metabolic cellular processes, such as the translation apparatus, at the concentrations m ∆=
(m1, . . . ,mnm )T ;

2. np proteins P ∆= {P1, . . . ,Pnp } belonging to unspecified cellular processes. p ∆= (p1, . . . , pnp )T denotes

the set of concentrations of P;
3. ns intracellular and mass-balanced metabolites S ∆= (S1, . . . , Sns ). Within the set S, we distinguish a

subset B ∆= (B1, . . . ,Bnb ) of abundant metabolites which have fixed growth-independent concentra-

tions b̄ ∆= (b̄1, . . . , b̄nb )T (and usually coincide with biomass macro-components such as DNA, cell wall or

plasmic membrane). We also consider a set of extracellular metabolites Sext
∆= (Sext,1, . . . , Sext,next ) of

concentrations sext
∆= (sext,1, . . . , sext,next )T that are not mass-balanced.

Finally, let us introduce the vector yT ∆= (eT ,mT ) of concentrations of molecular machines of size ny.

Typical units of concentrations e, m and p are in millimoles per gram of cell dry weight, and fluxes v in

millimoles per gram of cell dry weight per unit of time.

For a given cell growth rate µ ≥ 0, the RBA optimization problem (named Prba(µ)) can be formalized

mathematically as follows. For a fixed vector of concentrations p ∈ RNnp

>0 and the given growth rate µ ≥ 0,

find possible cell states y ∈ Rny

≥0,v ∈ Rne ,

subject to

(C1) −Ωv + µ(CS
Y y + CS

B b̄ + CS
P p) = 0

(C2a) µ(CM
Y y + CM

P p) − KT y ≤ 0

(C2b) −K
′
E y ≤ v ≤ KE y

(C3) CD
Y y + CD

P p − d̄ ≤ 0

where all the inequalities are defined component-wise and:

◦ Ω is the stoichiometry matrix of the metabolic network of size ns × ne, where Ωij corresponds to the

stoichiometry of metabolite Si in the j-th enzymatic reaction;

◦ CS
Y (resp. CS

P) is an ns ny (resp. ns np) matrix where each coefficient CS
Yij corresponds to the number

of metabolite Si consumed (or produced) for the synthesis of one machine Yj (resp. Pj); CS
Yij is then

positive, negative or null if Si is produced, consumed or not involved in the the synthesis of onemachine

Yj (resp. Pj);

◦ CS
B is an ns × nb matrix in which each coefficient CS

Bij corresponds to a metabolite Si consumed (or

produced) for the synthesis of one Bj;

◦ KT (KE and K
′
E, respectively) are matrices of size nm × ny (ne × ny , respectively) in which each coef-

ficient kTi (kEi and k
′
Ei , respectively) is positive and corresponds to the efficiency of molecular machine

Mi , i.e. the rate of the process per amount of the catalyzing molecular machine, (the efficiency of the

enzyme Ei in forward and backward sense, respectively);

◦ CM
Y (resp.CM

P ) is an nm ×ny (resp. nm ×np) matrix in which each coefficientCM
Yij typically corresponds to

the length in amino acids of the machine Yj (resp. Pj). In some cases (for instance for the constraints on

protein chaperoning), the length in amino acids can be multiplied by a coefficient, such as the fraction

of the whole proteome that necessitates chaperoning;
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◦ d̄ is a vector of size nc, where nc is the number of compartments (compartment membrane and/or

compartment interior forwhich density constraints are considered. d̄i is the density ofmolecular entities

within the volume or surface area. Densities are typically expressed as a number of amino-acid residues

by volume or surface area.

◦ CD
Y (resp.CD

P ) is an nc×Ny (resp. nc×np) matrix in which each coefficientCD
Yij corresponds to the density

of one machine Yj (resp. Pj) in the compartment i. By construction, we have one unique localization

per machine.

For given growth rate andmedium composition, all equalities and inequalities in our RBA problemPrba(µ)
is linear in the decision variables (y,v) and is proven to be convex [219, 221]. At given µ, Prba(µ) is a
feasibility optimization problem, where constraints (C1-C3) define the feasibility domain. The feasibility

domain can be empty or non-empty. If there exists a solution (y,v) to Prba(µ) -i.e. the feasibility domain

is non-empty-, then there exists a feasible resource distribution compatible with the given growth rate. In

other words, the cell can grow at this growth rate value. By construction, the feasibility domain of Prba(µ)
corresponds to the set of all possible phenotypes of the cell at a growth rate µ ≥ 0.

We conclude this with some remarks:

1. In practice, the vector b̄ contains non-zero values only for the concentrations of macro-components

such as DNA, cell wall, and lipid membranes, and for a few set of metabolites. These values are usually

extracted from the biomass formation reaction used in FBA models (see Chapter 5).

2. To model reversible enzymes, we introduced two diagonal matrices containing the enzyme efficiencies,

i.e. KE and K
′
E, describing the capacity constraints of enzymes in both directions. If an enzyme Ei is

considered irreversible, k′
Ei is set to 0.

3. In [220, 233], an RBA model was built for Bacillus subtilis. It integrates two macromolecular processes in

constraint C2a, the translation and chaperoning of proteins, and two density constraints, the limitation

of the cytosolic density and of the membrane occupancy. An RBA model can be refined by integrating

for instance other cellular processes and molecular machines, such as the transcription machinery,

the protein secretion apparatus (see [233, 231]), or molecule turnover [234], as well as other types of

constraints.

9.3.3 Simulation and analysis of RBA models

How to incorporate the medium composition. We represent the medium composition in two aspects,

namely (i) qualitatively, by allowing exchange of the mediummetabolites in the model (UBExchange,n > 0).
Note that somemetabolites, although not explicitly represented by the growth media, should also adhere

to this rule (e.g. oxygen, water, and protons). The (ii) quantitative composition of the growthmedium is de-

termined by extracellular concentrations, which, in turn, dictate the efficiencies of metabolic transporters

via Michaelis-Menten-like rate laws (as nonlinear k(c) functions; see section 9.1.1). For an extracellular

nutrient Sext,i with concentration sext,i ≥ 0, the efficiency of the corresponding metabolic transporter(s) is

given by kE(sext,i) = kcatsext,i
Km+sext,i

, with parameters kcat and Km for the turnover number and the affinity of

the transporter, respectively.

Calibration of model parameters. An RBA model may contain a high number of model parameters.

First, the global parameters to be estimated are related to cell composition: (i) the concentrations of

bulk biomass components b̄, which is usually deduced from the biomass reaction of the genome-scale

metabolic network of the organism. Using quantitative proteomics data [235], one can infer (ii) the protein

densities in different compartments (d̄), and (iii) the abundance of housekeeping (unspecified) proteins (p).

The next set of parametersweneed to collect concerns the efficiencies ofmolecularmachines (KE,K
′
E,KT).

As we learned in Chapters 2 and 3, the rate of an enzymatic reaction v depends on the enzyme’s efficiency

or ”apparent catalytic rate”, given by v = e kapp, with kapp = f(c) = k+
cat · ηrev(c) · ηsat(c) < k+

cat. The kapp

values are always below the kcat value, but may vary from state to state depending on metabolite con-

centrations. Since internal metabolite concentrations c are unknown and difficult to measure at genome-
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scale, we cannot estimate kapp from the explicit kinetic law f(c). We need to obtain these kapp parameters

empirically, for example by measuring the flux v and the protein abundance e in one condition and taking

their ratio.

Hence, for a given environmental condition, efficiency parameters can be estimated using quantitative pro-

teomics in combination with fluxomics [233] or FBA to estimate the flux distribution [231]. To account for

variable enzyme efficiencies, one may make the simplifying assumption that enzyme efficiencies depend

mostly on growth rate. By estimating the enzyme efficiencies at different growth rates and interpolating

between them, one obtains empirical relationships between efficiency and the growth rate [233] to be

used in Prba(µ). For instance, several estimates of enzymatic efficiencies obtained in contrasting growth

conditions will provide a relationship KE(µ) instead of a constant KE value.

Obtaining the RBA solution for a given parameter set. For an RBA problem with given parameters, there

exists a maximal growth rate µ∗ ≥ 0, such that for any µ, Prba(µ) is feasible if and only if µ ≤ µ∗ [219, 221].

For a givenmediumcomposition, themaximal growth rateµ∗ can computedby using a bisection algorithm,

in which a series of LP problems are solved to narrow down the exact growth rate at which the problem

becomes infeasible. A real-life example would be simulating growth in glucose-limited chemostat cultures

under different dilution rates D. With increasing D, the glucose availability increases, and a set of n dif-

ferent glucose uptake rates qGlc (qGlc,1, qGlc,2, . . . , qGlc, n) can be subjected to an RBA model to obtain a

set of optimal metabolic states (µ∗
1 , µ

∗
2 , . . . , µ

∗
n).

Together with the maximal feasible growth rate one obtains the optimal cell configuration maximizing

growth (µ∗,y∗,v∗). The principle of optimal performance, in this case, that a cell phenotype should maxi-

mize growth rate, in fact, coincides with the principle of parsimonious resource allocation between cellular

processes.

Exploration of the feasibility domain. Although RBA models inherently reduce the solution space due to

principle of parsimonious resource allocation, the solutions obtained might still contain considerable flux

variability. In the same vein as Flux Variability Analysis ([236], see Chapter 5), the feasibility domain can be

explored at optimal (µ∗) or sub-optimal (µ ≤ µ∗) growth rates. For one decision variable yi (resp. vi), two

LP problems are solved, where (i) constraints C1, C2 and C3 remain unchanged; (ii) the decision variable

yi (resp. vi) is maximized (LP 1) and minimized (LP 2). This operation is repeated for each decision variable

to obtain in fine the feasibility domain of all decision variables.

It was proven that the feasibility domain becomes smaller with increasing growth rate [219, 221], so it

might be worthwhile to probe the solution space at slow-growth regimes. In practice, at the optimum,

the cell configuration (µ∗,y∗,v∗) is often unique. Indeed, non-unique solutions will exist if two alternative
metabolic pathways have exactly the same cost in resources. Since all enzymes have different amino acid

sequences, use different cofactors, are differently localization, etc, this is highly unlikely. A caricatural

example of a model with non-unique solutions would be one in which an enzyme pool is arbitrarily split

into two, and the two new ”enzyme species” are given different names, although they are physically exactly

the same.

9.3.4 Use of -omics data-informed kapp vs. naïve kcat values

The three most popular formalisms of fine-grained resource allocation models, RBA [225], ME-models

[226], and pc-models [39], are variations on the same theme, as shown in the general discussion of the

underlying constraints in Section 9.2. Thus most of the ideas, concepts, and constraints are equivalent (or

at least highly similar) in their biological interpretation. Most of the differences arise from the approach

taken towards parametrization of these models, and consequently, interpretation of model output. Here

we will discuss an example where implementations differ significantly.

In resource allocation models, two types of constraints define the proteome capacity at given growth rate

µ, the protein density vector b̄, and the fraction of housekeeping proteins p in the proteome. The remain-

ing proteome space is to be distributed among the proteins that are explicitly defined in the model. The
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RBA formalism requires to formulate the function kapp(µ) (or KE(µ) in the RBA problem, Section 9.3.2) for

every protein in the model using -omics data (see Section 9.3.3), and the fraction of the ”housekeeping”

proteins in the proteome is determined from data for each simulation.

Conversely, the formulation of pc-models [39] allows more flexibility to the ”unspecified” protein UP , rep-

resented by a single artificial protein of average size and amino acid composition. Instead of setting a

fixed amount allocated to p which changes across conditions, one can determine the minimal fraction of

this protein in proteome UPmin, and formulate the demand to produce UP as an inequality constraint

UP ≥ UPmin. Interestingly, in Saccharomyces cerevisiae, the proteome mass fraction occupied by non-

metabolic proteins is relatively constant under different glucose-limited conditions, as determined by

quantitative proteomics data (see [39], Fig. S1 for a plot).

This inequality constraint can be interpreted as the upper limit of available protein space, i.e., under fixed

protein density y + p = const., the proteome not occupied by y ∆= e + m is allocated to p. Since now the

model can distribute the proteome among explicitly-defined vs. unspecified protein freely, the procedure

of fitting kapp values is no longer a prerequisite. Using kcat values, collected from literature/databases/own

experimental measurements, rather than apparent kapp values, has consequences both for predictions

and the data use: first, the model prediction on the protein use is the ”demand” of the enzyme and is

strictly coupled to the flux through the enzyme (equivalent to the ECM1 layer of enzyme costs in the Enzyme

Cost Minimizationmethod, Chapter 6). Second, the condition-dependent quantitative proteomics data can

be used as validation dataset for model predictions instead [237], as the predicted protein abundance is

not dependent on these datasets.

Using less data for parameter fitting and redirecting these data-rich datasets towards validation of model

prediction strengthens the argument for using resource allocation models for learning new biology, and

already has real-life examples. For instance, the discrepancies in predicted vs. observed levels of glycolytic

enzymes at glucose-scarce conditions in [39] inspired the same team to revisit the question whether the

high levels of glycolytic enzymes represent the optimal expression given very low thermodynamic driv-

ing force and undersaturation of glycolytic enzymes. Comparing predictions of Enzyme Cost Minimization

models with the results of the pc-model and experimental data, [228] proposed that S. cerevisiae expresses

genuine excess of glycolytic enzymes in glucose-limited conditions, meant to amply consume any glucose

as soon as it appears in the environment.

9.4 Biomass composition: both a constraint and a prediction

Cell models describe, among other things, what a cell is composed of (see Chapter 2). In FBA, specifically,

“biomass” refers to the proportions of different molecule classes (e.g. lipids, protein, DNA, RNA, cofactors)

in 1 gram dry weight of cells, and biomass composition needs to be defined prior to optimization. Since,

at least for FBA models of microbes, biomass production usually is the optimization objective, the litera-

ture frequently refers to the mathematical description of cell composition as ”biomass objective function”

(BOF). In most cases, it is assumed that the proportions of biomass constituents are fixed, only the total

production (flux through BOF) changes.

For the predictions of FBA models to be reliable, a high-quality BOF is a must (see Chapter 5). Therefore,

there is a sustained effort to experimental determination biomass composition, even for E. coli [238]; for

more details on the usual experimental measurementmethods, see the box in Chapter 2. In case support-

ing data are available, the cell composition in the BOFmay be described in amore fine-grainedmanner for

individual molecule types (e.g., individual lipids, proteins, mRNA species, etc), or even in terms of atomic

composition (which in turn gives clues about the amounts of molecule classes). So, overall, the biomass

composition acts as a global, and one of the most stringent, constraint on the predicted solution space in

FBA-based models.

However, cell composition may greatly vary not only between (micro-)organisms, or different cell types

within the same organism, but also for a the same organism/cell type across different conditions. Bud-
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ding yeast S. cerevisiae, for instance, exhibits rather linear relationships between the proportions of bulk

biomass constituents as a function of growth rate in glucose-limited cultures [2]. This variable composition

often poses a challenge for models: just like the uptake rates, the varying biomass composition reflects

complex global rearrangements of resources (for instance, different ribosome content at different growth

rates [35] leads to changes in RNA-to-protein ratio in the cells), and choices between metabolic strategies

(e.g. depletion of storage carbohydrates in glucose-fermenting S. cerevisiae [17]).

A main advance of resource allocation models, compared to conventional FBA models, is that only a part

of the biomass composition is given as input information just like in FBA (b̄ in RBA). The proteome com-

position, on the contrary, becomes a genuine prediction of the optimization procedure. Unlike small self-

replicator models (see the models in Chapter 8), this prediction is very detailed, as the the predicted pro-

teome composition is represented by the sum of individual protein abundances. Moreover, if proteins

require trace elements or cofactors (e.g. iron in iron-containing proteins) for function, the demand and

contribution to the overall biomass of these metabolites will also be predicted by the model (as it will vary

with the expression level of those proteins).

In theory, the abundance of biomass constituents other than proteome could be formulated in the way

they become predictions of the resource allocation models, rather than hardcoded inputs. Following the

idea implemented in the small, coarse-grained models of [218], one could set relationships between, e.g.,

protein density in the cells and production of lipids (in [218], the biological interpretation was to maintain

the surface area-to-volume ratio constant). Currently this is not widely accepted as a standard practice,

and, as we can see from the example above, requires comprehensive experimental evidence, which, by

itself, could be interpreted still as ”input to the model”.

9.5 Concluding remarks

In this chapter, we have considered the resource allocation models, the extensions of FBA models which

couple metabolic networks with the macromolecular machinery that is required to operate them. These

models append existing FBAmodels with a large number of additional reactions, metabolites, constraints,

and model parameters, and, overall, offer a fine-grained representation of cellular economy. Many of ki-

netic parameters cannot be accuratelymeasured for individual enzymes, and/or are condition-dependent.

The quantitative nature of the predictions of resource allocation (and the most cellular decisions/pheno-

type shifts), however, are largely governed by global constraints: for instance, when the protein density

g gDW−1 in a compartment reaches its upper limit (=that compartment is fully packed with protein), the

cells switch from fully-respiratory to respiro-fermentative growth (see [226] for E. coli, or [39] for S. cere-

visiae). Unlike the kinetic parameters, which are rather uncertain, these ”global” constraints are based on

more trustworthy evidence.

Thus thesemodels still retain a reasonable compromise concerning numerical tractability andmodel com-

plexity, and can accurately predict complex adaptations, which cannot be captured by GEMs in an au-

tonomous way, i.e. without the addition of empirical constraints on fluxes. A successful use case of using

resource allocation models is dissecting iron economy, using RBA models: some proteins require iron for

their function, and the cell growth can become iron-limited in some conditions. The RBA model was used

to predict cell behavior under iron starvation, and the predictions suggested couple of scenarios, (i) the

cell may increase the import of iron, but also (ii) avoid using proteins that contain iron (and the pathways

in which they operate) [233, 239].

As with the biomass composition, another aspect of resource allocation models (and FBA-based models

in general) with some duality in its interpretation is the objective function. Although its validity has been

always debated since conception, maximization of instantaneous growth rate as the optimization objec-

tive has shown incredible success in predicting microbial physiology. The current approach we apply for

resource allocation models still remains the FBA-based assumption that the desired cell phenotypes are

the onesmaximizing instantaneous growth rate µ. This time, however, the µ is also amodel variable, so we
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have to apply bisection to obtain the optimal solution for each parameter set we use in resource allocation

models.

It is becoming more and more evident that a lot of phenotypes (and microbial species!) we try to predict

divert from the principle maximization of instantaneous growth rate. For instance, the most experimen-

tal microbial physiology research has been focused on carbon-limited (C-limited) cultures, especially the

yeast work in Delft, the Netherlands (see [2, 17] for examples). It seems that the maximization of growth

rate work very well in C-limited case, and the success of resource allocation models to quantitatively cap-

ture these phenotypes [226, 233, 39] affirms this assumption. But is C-limitation descriptive of natural

environments? Let us continue the argument with yeasts as an example.

Yeasts in the wild, for instance, very frequently are subjected to feast-famine cycles in terms of carbon

availability, and one could argue that these yeasts should act as glucose-limited in the famine phase of

the cycle. Yet the current opinion in the yeast ecology seems to see feast-famine cycles as a continuous,

although reduced, supply of carbon, and steer towards embracing a higher role of nitrogen (N) limitation

in natural environments instead. Currently, our understanding of N-limited growth is not very compre-

hensive, and N-limitation is also a case where the instantaneous growth rate maximization breaks down:

the pc-models of S. cerevisiae cannot quantitatively capture the cell behavior under N-limited conditions

(Pranas Grigaitis, unpublished).

So the selection of a suitable optimization objective can be a choice followed by huge success, but also,

the optimal solution might end up contradicting the existing knowledge. How can we try to mitigate that?

One huge advance of resource allocation models is that at any condition, the available solution space is

greatly reduced, compared to conventional FBA. We can argue that we have introduced a whole new set, a

whole new type of constraints into the model by accepting assumptions stemming from the metabolism-

molecular machinery coupling. In theory, we should be able to reason further regarding any additional

(even empirical/ad hoc) constraints and/or additional optimization objectives whichwould bring ourmodel

predictions closer to observed biology. Just remember: fitting models is not a sin; but nontransparen-

t/reckless fitting is! After all, modeling is an art, and there is no one cookbook that represents the ground

truth: we should be free to explore the secrets of biology, as unrealistic as our assumptions are at times.

A final remark on modeling being an art. In this book, we have explored several types of cell models of

different size, detail, and assumptions behind. This whole hierarchy and diversity of different implementa-

tions and formalisms might seem overcomplicated and unnecessary, although it is a mere reflection that

”one size does not fit all”. In the following chapters we shall continue discussing further model types, and

we invite (future) modelers to be creative, mix, match, and tailor different models (and modeling types) to

advance biology. The compromise between fine-grained but liner modeling vs. complex kinetics that ma-

terialized into resource allocationmodels is an inspiring example of how one can push bounds of different

methods.

Recommended readings

RBAwebsiteWebsite rba.inrae.fr for further details on RBA. Under Tools, there are examplemodels and

Jupyter notebooks for running them.

Review article on large-scale resource allocation models K. de Becker et al. ”Using resource constraints

derived fromgenomic andproteomic data inmetabolic networkmodels”CurrOpin Syst Biol 2022, 29:100400

Problems

Problem 9.1 The role of metabolite concentrations

The available cell space for proteins depends on the assumed space occupied by small metabolites.

1. What if the metabolite content of the cell has been underestimated? Assume that the amount of

small metabolites in cells is currently underestimated. What problems in model predictions would

rba.inrae.fr
https://rba.inrae.fr/tools.html
https://doi.org/10.1016/j.coisb.2021.100400
https://doi.org/10.1016/j.coisb.2021.100400
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arise from the fact? In what way would predictions (by FBA or other methods) be distorted?

2. In what way would a cell, in reality, profit from a lower small metabolite content? Can we assume

that the ratio between small metabolites and proteins is optimized? Describe possible aspects of this

compromise! For inspiration, see [240].



Chapter 10

Optimal cell behavior in time

Dafni Giannari, Hidde de Jong,Diego A. Oyarzún, Steffen Waldherr, and Agustín G. Yabo

Chapter overview

◦ Microorganisms live in continually changing environments, which require them to develop adapta-

tion strategies.

◦ These strategies have been profitably studied under the assumption that microorganisms have

evolved to optimize one or several aspects of their adaptive response.

◦ The mathematical formalization of this assumption leads to dynamic optimization problems that

can be solved by means of techniques from optimal control theory.

◦ The chapter discusses three example problems: dynamic optimization of enzyme expression in

metabolic pathways, dynamic optimization of coarse-grained models of cellular growth, and dy-

namic flux balance analysis.

◦ The results obtained for these problems illustrate the interest of studying adaptation strategies

from the perspective of dynamic optimization, and the strengths and weaknesses of this approach.

10.1 Introduction

The study of microorganisms in the laboratory has often focused on the creation of stable conditions

enabling balanced, reproducible growth of the population. Such conditions are almost never found in na-

ture. Microorganisms live in continually changing environments in which nutrients are only intermittently

available and inwhich the cells are submitted to a variety of other temporally varying stresses (acidity, tem-

perature, drought, ...). In order to survive in these conditions, microorganisms have developed a range of

molecular mechanisms to detect changes in the environment, or signals announcing such changes, and

to adapt their functioning accordingly.

A well-studied example of the dynamic response of bacteria to changes in their environment is the phe-

nomenon of diauxic growth, discovered by Jacques Monod ([241] (see also Chapter 8). When Escherichia

coli is grown in a medium containing a mixture of two carbon sources, e.g., glucose and lactose, the cells

generally first deplete the carbon source supporting the highest growth rate (glucose) before starting to

assimilate the other carbon source (lactose). A variety of mechanisms are involved in this switch from a

preferred to a secondary carbon source, including the release of the repression of enzymes necessary for

lactose utilization, the release of the inhibition of lactose transporters, and the global regulation of a large

number of other genes [242, 243].

In many situations, the precise functioning of the molecular mechanisms regulating the adaptation of mi-
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crobial physiology to changes in the environment is not or only qualitatively understood. This precludes

their inclusion in quantitative models that accurately predict the dynamic response of the cell in a variety

of conditions. The lack of mechanistic, quantitative information can be bypassed by making appropriate

assumptions about the regulatory systems, in particular that the latter have evolved under the selection

pressure of the environment to optimize the response to external perturbations. More precisely, it is as-

sumed thatmicroorganisms have developedmechanisms that allocate limiting resources (proteins, fluxes,

...) to cellular processes so as to maximize or minimize some objective function, or combination of objec-

tive functions, over the time-interval of environment changes.

The use of an optimality assumption to make up for missing or incomplete information was already ex-

ploited with success in Chapter 5 of this book. The difference with those approaches is that here we are

interested in cases where the optimality criterion is defined over an interval of time rather than at steady

state, and thus we need to consider dynamic instead of static optimization. Moreover, some methods

take into account that cells may vary the allocation of limiting resources to cellular processes over the

time interval in which the environmental changes occur, instead of only considering a constant response

in a stable environment. This generalization of the problem enormously increases its complexity. It may

also lead to nontrivial dynamical effects that are not found in the case of static optimization, such as the

accumulation of resource buffers to anticipate future changes in the environment [244].

The classical argument motivating the optimality assumption in the case of microorganisms is that mu-

tants of genes coding for enzymes in central metabolism often have a lower growth rate than the wild-type

strain, where growth rate is interpreted as indicating fitness [245]. This argument, however, derives from

observations of balanced growth in a stable environment. Is there any evidence that, in the case of chang-

ing environments, microorganisms have evolved to perform dynamic optimization? Some circumstantial

evidence is provided by the observed capacity of microorganisms to anticipate changes in their environ-

ment. For example, whenmoving along the digestive tract, E. coli cells are exposed first to lactose and then

to maltose, thus requiring the ability to switch from growth on lactose to growth on maltose (reminiscent

of diauxic growth in the laboratory) [246]. Interestingly, reporter gene studies found that the enzymes re-

quired for maltose assimilation are expressed at a much higher level in the presence than in the absence

of lactose, in otherwise identical conditions [247]. This suggests a specific effect of the presence of lactose

on the expression of maltose enzymes, preparing the cells for the expected future availability of maltose.

This and other examples of anticipatory behavior are not conclusive in themselves, but they suggest that

dynamic optimization is a plausible working hypothesis that may be useful in practice.

The aim of this chapter is to show how microbial physiology can be studied by means of dynamic opti-

mization, by combining a specific objective function, or combination of objective functions, with models

of different scope and granularity, while taking into account a number of biophysical and biochemical

constraints. We first provide a general definition of dynamic optimization problems in the mathemati-

cal framework of optimal control. We then instantiate this general definition for three types of biological

problems, each giving rise to a specific class of models. In particular, we discuss (i) dynamic optimization

of enzyme expression in metabolic pathways, (ii) dynamic optimization of resource allocation in coarse-

grained models of cellular growth, and (iii) dynamic flux balance analysis (dFBA) of metabolic networks.

Across the different examples, the scope of the models varies from metabolic pathways (i) to metabolic

networks (iii) to the entire cell (ii). The increase in scope is sometimes traded against a lower granularity

of the description of cellular process (ii). Some of the models provide a kinetic description of the rates of

the individual reactions (i and ii), whereas other models only provide constraints on the reaction rates (iii).

In every case, different objective functions are tried, for example the minimization of the time to produce

a given compound or the maximization of the amount of biomass produced.

For each of the biological problems and corresponding models considered, we give the precise definition

of the modeling formalism and the optimization problem, a small example as an illustration, a discussion

of the solution of the problem, and a brief description of more realistic applications and the insights they

have given into the functioning of cellular networks. The chapter does not give a detailed explanation of the
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mathematicalmethods that are used for solving different classes of optimal control problems, because this

would require knowledge of specializedmathematical concepts with which the average reader of the book

may not be familiar. Moreover, these methods have been the subject of dedicated textbooks [248, 249].

Rather, we focus on the definition of the dynamic optimization problems and the interpretation of the

solutions returned by available numerical solvers of optimal control problems.

10.2 Mathematical form of dynamic optimization problems

The models of cellular processes considered in this chapter have the form of systems of ordinary dif-

ferential equations (ODEs) (Chapter 3). Dynamic optimization problems for such systems take the form of

so-called optimal control problems, which have their roots in physics and engineering [248, 249].

Let x(t) be the (time-varying) state of the dynamical system, typically concentrations of (intracellular or

extracellular) metabolites or proteins, and let f(·) describe the (linear or nonlinear) dynamics of the state.

u(t) denotes the (time-varying) control variables, e.g., fluxes allocated to specific reactions or protein frac-

tions allocated to specific enzymes. The time-points 0 and T > 0 indicate the bounds of the interval over

which the behavior of the system is optimized, with respect to an objective function J . The behavior of the

system, given the control exerted by u(t), is subject to constraints c1(·) and c2(·) on the admissible control

inputs at specific time-points t or over the entire time-interval [t0, te], respectively. The constraints express
physical limitations, such as the intracellular density of molecular constituents (Chapter 2), or biochemical

limitations, such as the maximum protein synthesis rate. Combining the above elements, we obtain the

following definition of dynamic optimization problems:

max
u∈U

J(x(t),u(t), 0, T ), (10.1)

such that

dx
dt

= f(x(t),u(t)), x(0) = x0, (10.2)

0 ≥ c1(x(t),u(t)), (10.3)

0 ≥ c2(x(0),x(T )). (10.4)

In summary, the problem consists in finding controls that, given the dynamics of the system, maximize

the objective function and satisfy the constraints [250].

The above definition makes no specific assumptions about the dynamics of the system under considera-

tion. Given that we deal with biochemical reaction systems, the dynamics can be refined to

dx
dt

= N v(x(t),u(t)) − µ(t) x(t), x(0) = x0, (10.5)

where N represents the stoichiometry matrix and µ is the (time-varying) growth rate. The principles of de-

scribing the structure of biochemical reactions systems bymeans of a stoichiometrymatrix were described

in Chapter 3 above.

The problem definition assumes that there is only a single objective function to be optimized. This may

not be appropriate, sincemicroorganisms seem to optimize several criteria in parallel, for example growth

rate and survival under stress [251]. In many situations, it is therefore more appropriate to generalize the

above problem to the case where J(. . .) represents a vector of n objective functions J = [J1, . . . , Jn]. Thus
generalized, the problem does not usually have a single solution, but rather an infinite set of solutions

located on a so-called Pareto surface [252]. Solutions on the Pareto surface have the property that every

alternative solution improving the performance with respect to some objective necessarily degrades the

performancewith respect to at least one of the other objectives. In the problems developed in the sections

below, we principally consider optimality in the case of a single, possibly composite objective.

Many methods for solving optimal control problems (10.1)-(10.4) exist. While some optimal control prob-
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lems can be solved analytically, most of the problems considered in the examples below require numerical

approximations to be solved. All examples developed in the sections below have been solved by means

of freely available solvers.

10.3 Dynamic optimization of enzyme expression in metabolic

pathways

A number of experimental works suggest that metabolic regulation encodes temporal patterns in enzyme

expression that may be beneficial for cell physiology [253, 254]. Since the timing of gene expression can

directly control resource expenditure, several authors have attempted to rationalize such patterns as solu-

tions of optimal control problems defined as in (10.1)-(10.4). The general idea is to optimize the temporal

evolution of enzyme concentrations using objective functions that are representative of cellular goals.

This provides a rationale to reverse-engineer optimality principles that underlie the expression patterns

observed in experiments. In this section, we briefly describe results obtained for unbranched metabolic

pathways, the basic building blocks of the metabolic networks of the cell.

Dynamic optimization of enzymatic concentrations was first considered by Klipp and co-workers [255].

The problem under study was the minimal-time activation of an unbranched network from an “off” state,

where only the precursor is present, to a state where all substrate has been converted into product. To

this end, the authors considered an unbranched pathway with n enzymes and (n+ 1) metabolites:

dx0

dt = −k1e1x0,

dxi

dt = kieixi−1 − ki+1ei+1xi,

dxn

dt = knenxn−1,

(10.6)

with a given initial condition x0(0) 6= 0 and xi(0) = 0 for i = 1, 2, . . . , n, and where all enzymatic reactions

are assumed to followmass-action kinetics with rate constant ki. To model the “off” state prior to pathway

activation, the initial conditions can be set to x0(0) = s, where s is the concentration of precursor at

t = 0, and xi(0) = ei(0) = 0 for all i = 1, . . . n. The goal was to determine a vector of optimal enzyme

concentrations e(t) that solve the following problem:

e?(t) = arg min
e∈U

1
s

∫ ∞

0
(s− xn(t)) dt, (10.7)

subject to the dynamic model in (10.6) and constraint set U as in (10.1) defined by a limited overall enzyme

abundance over the optimization horizon:

n∑
i=1

ei(t) = etot, (10.8)

where etot is a constant amount of total enzyme concentration. The objective function in (10.7) is called the

transition time of the pathway and quantifies the time needed to convert all precursor into product. Note

that the optimization problem (10.6)-(10.8) falls within the general class of problems defined by (10.1)-

(10.4).

Numerical solutions of the optimization problem reveal that the enzyme profiles have a temporal se-

quence that matches the order in which the enzymes appear in the pathway. Crucially, such pattern re-

sembles the “just-in-time” strategies widely studies in operations research [256], whereby costly resources

are deployed only when needed in a production line. In the context of cellular metabolism, such a strat-

egy implies thatminimal time activation tends to express biosynthetic enzymes only when their substrates

have been built up to sufficiently high concentrations, and thus avoid wasteful protein expression.

The first experimental demonstration of the just-in-time principle was presented by Zaslaver and col-
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leagues [253]. This work employed luminescent and fluorescent reporters to measure the temporal adap-

tation of Escherichia coli upon withdrawal of amino acids from the growth media. Clear just-in-time pat-

terns of enzyme expression were found in the serine, methionine and arginine biosynthetic pathways.

To better understand such patterns, the authors studied a model for an unbranched pathway with three

enzymatic steps and Michaelis-Menten kinetics:

dxi

dt = kcat,i ei
xi−1

xi−1 +KM,i
− kcat,i+1 ei+1

xi

xi +KM,i
− µxi, i = 1, . . . , 3, (10.9)

with given initial conditions x1(0) 6= 0, x2(0) = x3(0) = 0, and where (kcat,i, KM,i) are the enzyme turnover

rate and Michaelis-Menten constants of each enzyme, respectively. The precursor concentration x0 is

assumed to be constant. Themodel also includes a dilution term that accounts for dilution by cell growth at

rate µ. In contrast to previousworks, thismodel also includes an explicit description of enzyme expression:

dei

dt = βi

1 + r/κi
− µ ei, i = 1, . . . , 3, (10.10)

where the first term is a lumped model of enzyme expression controlled by a time-varying (active) re-

pressor concentration r(t), with maximal expression rate βi, and κi being the concentration of (active)

repressor required for half-maximal expression. Moreover, since bacterial amino acid pathways are often

subject to end-product feedback, the model assumed that the repressor gets activated by the pathway

product:

r(t) = rT(t) x3(t)
Kr + x3(t) , (10.11)

where rT(t) denotes the total (active and inactive) repressor concentration. The model also included neg-

ative autoregulation of the repressor itself:

drT

dt = β0

1 + r/κ0
− µ rT, (10.12)

where β0 and κ0 define the strength of autoregulation similarly as in the lumped model for enzyme ex-

pression in (10.10).

The authors constructed an optimization problem so as to study the relation between optimality, and the

strength of the regulatory parameters k = (k1, k2, k3) and β = (β1, β2, β3). To this end, they defined the

optimization problem

min
k,β

a ·
3∑

i=1

∫ T

0

β0

1 + r(t)/κ0
dt︸ ︷︷ ︸

total amount of repressor

+
∫ T

0
|F − Fgoal| dt︸ ︷︷ ︸

deviation from steady state

, (10.13)

where a is a scalar weight accounting for the protein costs, T is the optimization horizon, and F is the rate

of product synthesis:

F = kcat,3 e3
x2

x2 +KM,3
. (10.14)

In problem (10.13), the constant Fgoal is a prescribed production flux that the pathway should achieve at

steady state. Minimization of the objective in (10.13) accounts for the activation of the pathway from an

“off” state until it reaches a prescribed flux Fgoal. This formulation differs from the previous example [255]

in two important ways. First, it accounts for cellular resources in the objective function itself. The first term

of the objective quantifies the total amount of repressor produced through the optimization horizon, and

thus relates to the amount of cellular resources required to activate the pathway. Second, the decision

variables are the regulatory parameters, not the temporal profiles of the molecular species. Therefore,

strictly speaking, this is not an optimal control problem but rather a static optimization problem subject to

dynamic constraints encapsulated by the pathway ODE model. Through numerical solutions for different
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values of the protein cost weight a and optimization horizon T , the authors determined conditions under

which the optimal solutions showed two features of the just-in-time property, namely:

τ1 < τ2 < τ3, max
t
e1 > max

t
e2 > max

t
e3, (10.15)

where τi is the response time, i.e. the time to reach 50% of maximal concentration, and maxt ei is the peak

concentration of each enzyme. This theoretical model was designed to mimic the architecture of gene

regulation in such pathways, whereby the end product commonly represses the expression of upstream

enzymes, and thus gave both experimental and computational evidence that just-in-time patterns may be

the result of optimality principles underlying the regulation of metabolic pathways.

Further experimental evidence of temporal patterns in enzyme expression have been found in other path-

ways [257] and organisms [254], and number of subsequent works have explored their optimality in more

detail; we refer the reader to the review in [258] for a detailed discusson on such approaches. Oyarzún

and colleagues [259], in particular, gave the first mathematical proof that just-in-time dynamics are a gen-

eral property in models of unbranched metabolic pathways. Using a cost-benefit objective function that

balances the speed of response against the cost of expressing pathway enzymes, they showed that the

just-in-time patterns emerge in pathways of arbitrary length andwithminimal assumptions on the enzyme

kinetics. Specifically, they considered a general model for an unbranched pathway with n+ 1 reactions:

dxi

dt = gi−1(xi−1) ei−1 − gi(xi) ei, i = 1, . . . , n, (10.16)

with initial conditions xi(0) = 0 for i = 1, 2, . . . n, and the precursor x0 assumed to be at a constant con-

centration. The functions gi represent a general kinetic turnover rate satisfying the following conditions:

gi(0) = 0,
∂gi(xi)
∂xi

> 0.
(10.17)

The above assumptions are generally satisfied by most enzyme kinetic functions, as catalytic rates are

typically a monotonic function of the substrate concentration. In particular, the assumptions in (10.17)

are met by common kinetics such as mass-action, Michaelis-Menten and Hill equations. The optimization

problem considered in [259] corresponds to a free final-time optimal control problem:

e?(t) = arg min
e∈U

∫ T

0

(
1 + α′ e(t)

)
dt, (10.18)

where e(t) is the vector of enzyme concentration, α is an (n+ 1)−dimensional vector of tuneable weights,

T is a free optimization horizon, andU is a constraint set as in (10.1). The first term in the objective function

(10.18) accounts for the total time taken to activate the pathway from the “off” state up to a steady state

flux, while the second term weighs the cost of pathway activation. To account for limited availability of

cellular resources, the authors also included a temporal constraint on the enzyme concentrations:

n∑
i=0

ei(t) ≤ etot, (10.19)

which is a relaxation of the constraint originally employed by Klipp et al in (10.8), as well as a terminal

constraint of the form:

ei(t) =
Fgoal

gi(xi(T )) , for t ≥ T, (10.20)

where Fgoal is a (constant) target pathway flux, similar as in (10.13). The terminal constraint ensures that

the pathway reaches a steady state at the final time T . Using Pontryagin’s Minimum Principle [249], the

authors showed that the optimal enzyme concentrations follow abang-bang temporal profile thatmatches

the order in the which they act on the pathway. This result was shown to be independent of the weight α,
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Figure 10.1: Example of optimal enzyme expression in an unbranched metabolic pathway – (A) A simple
scheme of themetabolic pathway. (B) Time evolution of the optimal enzyme expression ui andmetabolite
concentration xi. For the simulations, the functions gi are Michaelis-Menten with constants k = (1, 2, 4, 3)
s−1, K = 1 mM, V = 0.2 mM s−1 and x0 = 5 mM. Enzymatic weights are set to αi = 1 mM−1 s and
maximum enzyme availability Etot = 1 mM. Resulting activation times are t0 = 1.59 s, t1 = 2.2 s and
tf = 2.55 s.

the number of enzymatic steps, and valid for a wide range of enzyme kinetics satisfying the assumptions

in (10.17), thus extending the original finding in [255] to a larger class of pathways. Figure 10.1 shows a

numerical example of the optimal activation pattern obtained for an unbranched metabolic pathway of

length three (see also Exercise 10.1).

In this section we have reviewed some optimal control approaches for the optimization of unbranched

metabolic pathways. While differing in their formulations and solution strategies, these approaches pro-

vide substantial computational evidence that some temporal patterns observed in metabolic dynamics

can be understood as the solution of an optimal control problem. In the next section we focus on ap-

proaches that go beyond individual pathways and include additional components and processes of the

cellular machinery.

10.4 Dynamic optimizationof resource allocation in coarse-grained

models of cellular growth

In the previous section, we considered models that were essentially limited to metabolic pathways. The

optimization problems were formulated in terms of the allocation of enzymes to the different reactions

in the pathway. In this section, we generalize the perspective by increasing the scope of the models from

metabolism to protein synthesis and growth. The optimization problems concern the allocation of re-

sources to the synthesis of enzymes catalyzing different metabolic reactions, but also to the synthesis of

ribosomes in charge of the production of proteins. Growth is explicitly defined in terms of the increase of

proteinmass, and leads to growth dilution of all cellular components. Themodels are very similar to those

considered in Chapter 8, but the optimization problems are dynamic rather than static. That is, instead of

searching an allocation of cellular resources to the synthesis of different classes of proteins that is optimal

at steady state, during balanced growth, we are interested in finding a time-varying resource allocation

strategy optimizing an objective defined over an interval of time, e.g., during a transition between two
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states of balanced growth.

We consider the class of models with dynamics given by Eq. (10.5), where the input u is interpreted as the

(time-varying) resource allocation strategy. Among the cellular components x, we distinguish between

metabolites and proteins, with concentrations c and p, respectively. Accordingly, the concentration vector
can be written as x = [c,p]′. We also distinguish between enzymatic reactions and protein synthesis

reactions. While the former have metabolites as substrates and products, the latter convert metabolites

(amino acids) into proteins. An enzymatic reaction i has the following reaction rate function:

vi(t) = ki pj(t)hi(c), (10.21)

where ki is a catalytic constant, pj the concentration of protein j, and hi a function describing enzyme

saturation. Enzyme saturation is determined by the substrates, products, and activators/inhibitors of the

reaction. Typical rate functions vi follow mass-action kinetics or (ir)reversible Michaelis-Menten kinetics.

The synthesis of protein i is associated with the reaction-rate function

vi(t) = ui(t) vR(t), (10.22)

where vR is the total protein synthesis rate defined by

vR(t) = kR pR(t)hR(c(t)), (10.23)

with kR the maximum protein synthesis rate, pR the concentration of ribosomes, and hR a function de-

scribing the saturation of ribosomes by their substrate, that is, amino acids (or more precisely, tRNAs

charged with amino acids). The function ui in Eq. (10.22) is a time-varying resource allocation function, de-

scribing the fraction of the total protein synthesis rate allocated to the synthesis of protein i. The fractions

are non-negative and sum to 1, that is, for every time t,

∑
i

ui(t) = 1, and ui(t) ≥ 0, for all i. (10.24)

In most models, the biomass of a growing cell population is equated with the mass of proteins, the most

abundant cellular component (Chapter 2). Under the further assumption that the biomass density is con-

stant, it follows that the total protein concentration ptot must be constant, where

ptot =
∑

i

pi(t), (10.25)

with the index i running over all proteins. Moreover, the growth rate reduces to the relative (or specific)

increase of the protein mass, which leads to

µ(t) = vR(t)
ptot

= kR pR(t)hR(c(t))
ptot

. (10.26)

The above model couples metabolism, protein synthesis, and growth in a single formalism, in the spirit of

the small resource allocation models discussed in Chapter 8.

Figure 10.2 gives an example of a resource allocation model, describing a simple self-replicatory micro-

bial system [260, 261] (see Chapter ?? for related models). The model divides the proteome into three

categories: ribosomes, enzymes, and housekeeping proteins, with concentrations pQ, pR, and pM , respec-

tively. In addition to the three categories of protein, we add a metabolite representing the precursors

for protein synthesis, with concentration c. The precursors are produced from nutrients in the environ-

ment at a rate vM , a macroreaction catalyzed by the enzymes. Protein synthesis occurs at a rate vR,

catalyzed by the ribosomes. The resource allocation functions uQ, uR, and uM determine the fraction of

the protein synthesis rate assigned to each of the three protein categories, where uQ is assumed to be a
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Figure 10.2: Example of optimal resource allocation strategy in a coarse-grainedmodel ofmicrobial growth
– (A) Representation of simple self-replicator model of microbial growth. (B) Model and optimization prob-
lem for the self-replicator shown in panel A, as discussed in the text. (C) Optimal dynamic resource alloca-
tion strategy, in terms of the fraction of resources attributed to ribosome synthesis (uR). (D) Time-varying
protein mass fractions corresponding to the optimal solution shown in panel C. The parameter values
used for the simulation are kM = 0.5, kR = 1,KR = 0.5 and uQ = 0.6.

constant, growth-rate-independent fraction. The rate equations for the metabolic and protein synthesis

reactions follow irreversible Michaelis-Menten kinetics, where the substrate concentration in the medium

is assumed saturating.

The resource allocation functions in the model are not explicitly specified by regulatory mechanisms, but

assumed to follow a dynamic pattern optimizing an objective criterion. In many cases, the objective cri-

terion is based on the hypothesis that microorganisms have evolved to maximize the accumulation of

biomass. While this hypothesis can be criticized on theoretical and empirical reasons, it is a reasonable

choice in well-mixed environments and provides an interesting baseline in other environments. In the

model framework considered here, this gives rise to the following objective function:

max
u∈U

J(x(t), u(t), 0, T ) =
∫ T

0
kR pR(t)hR(c(t)) dt, (10.27)

where like in the general case of Eq. (10.1), U denotes the set of admissible profiles for the resource al-
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location functions u. Note that maximization of biomass over the time-interval [0, T ] amounts to taking

the integral of the instantaneous growth rate over that time-interval, defined by Eq. (10.26). This objective

does not generally reduce to growth rate maximization, that is, maximization of the instantaneous growth

rate at every time-point of this interval. In particular, there may be situations where a lower-than-optimal

growth rate over some sub-interval of [0, T ] may prepare for a higher growth rate after a sudden change

in conditions, and thus turn out to be beneficial for the total accumulation of biomass over [0, T ]. The

dynamic perspective on microbial growth in this chapter thus entails a generalization of the objective cri-

terion in comparison with previous chapters, where balanced growth of microorganisms at steady state

was considered.

The question can be asked, for the microbial self-replicator in Figure 10.2, how the cells redistribute their

resources over the different protein categories after a change in environment, in particular a shift of the

cells from a poor to a rich carbon source. In the case of E. coli, for example, such as shift might involve a

change fromminimalmediumwith acetate tominimalmediumwith glucose. Given that E. coli grows faster

on glucose than on acetate, and that a higher growth rate requires an increased proportion of resources

to be allocated to ribosomes according to the growth law (Chapter 10), one expects uR to increase after

the shift. Since uQ is assumed constant, and the resource allocation functions must sum to 1 at every

time-point, this overall increase of uR must be balanced by a decrease of uM . These expectations concern

resource allocation before the shift (balanced growth on acetate) and a long time after the shift (balanced

growth on glucose), but the growth law provides no information on the pattern of adaptation immediately

after the shift.

In order to investigate the optimal adaptation pattern of uR immediately after the growth transition, we

solve the dynamic optimization problem specified in Figure 10.2. For the simple example considered

here, the optimal solution can be characterized analytically [262, 260, 261]. This is not possible for more

complicated examples, however, which require the optimal solution to be constructed numerically. Fig-

ure 10.2C-D show a typical solution for parameter values estimated from experimental data [261]. Starting

from a low value of uR during balanced growth on acetate, the optimal resource allocation scheme con-

sists of a sequence of switches between uR = 1 (maximal ribosome synthesis) and uR = 0 (no ribosome

synthesis), until an intermediate value of uR for balanced growth on glucose is attained. The value of uR

during balanced growth on glucose is higher than that for balanced growth on acetate, as expected from

the growth law.

The sequence of on-off switches followed by the intermediate steady-state value is called a bang-bang-

singular solution in optimal control theory [260, 261]. The solution reflects a dynamic trade-off between

the two different functions contributing to growth: metabolism and protein synthesis. When, due to

growth dilution, the ribosome concentration falls to a level that is limiting for maximal protein synthesis,

the synthesis of ribosomal proteins is switched on (uR = 1), leading to an increase of the ribosome con-

centration. Switching on the synthesis of ribosomal proteins causes the synthesis of metabolic enzymes

to be switched off. When, due to growth dilution, the concentration of metabolic enzymes next falls to a

level that the precursors produced by the latter become limiting, the synthesis of metabolic enzymes is

switched on (uR = 0) to replenish the precursor pool, and so on (see Exercise 10.2).

Optimal solutions with a similar bang-bang pattern were already encountered in the previous section.

They also occur in a model with a more detailed description of different precursor (amino acid) synthesis

pathways under the objective under the minimal time of adaptation after a shift from a medium sup-

plemented with amino acid to a medium lacking amino acids [263]. In a different type of problem, the

development of intestinal crypts, the minimal time to mature crypts was found to depend on the on-off

control of the proliferation of stem and non-stem cells [264]. There is no convincing experimental evidence

that the adaptation of ribosomal synthesis after a nutrient upshift from a poor to a carbon source follows a

bang-bang singular pattern. The interpretation of proteomics data after a nutrient upshift in E. coli shows

that the simple upregulation of ribosomal resource allocation to the steady-state value for growth on the

rich nutrient captures the ribosomal protein expression data well [265].
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This example serves to emphasize that, while the optimality assumption may lead to thought-provoking

predictions, these need to be confronted with experimental data. In case the optimal solutions do not

agree with the data, several revisions of the problem could be considered. While growth optimization

was chosen as the objective criterion in the example of Figure 10.2, there is evidence that during balanced

growth, microorganisms find a trade-off betweenmaximizing growth rate in a given environment andmin-

imizing necessary adjustments to other environments [251]. The problem could therefore be generalized

to a multi-criteria optimization problem. An example is the analysis of a model similar to that considered

here under the objectives of biomass maximization and minimal adaptation time after a nutrient shift

[266]. The formulation of the optimization problem in Figure 10.2 does not put any constraints on valid

optimal resource allocation strategies, except that the individual functions ui components need to sum

to 1 (Eq. (10.24)). Bearing in mind that the regulatory mechanisms underlying a resource allocation come

with a cost, and need to respect certain physical constraints, the predicted resource allocation strategy

may not be feasible. When such constraints are taken into account, the optimal solution may no longer

be bang-bang singular, but resemble the observed adaptation pattern [267, 261].

In summary, the dynamical optimization approach for studying microbial growth presented here provides

a way to test the consequences of hypothesized objective functions in combination with simple resource

allocation models. The predictions can be confronted with experimental data, but may also inform the

redesign of microbial strains for metabolic engineering purposes (Box 10.A).

Box 10.A Temporal optimization for biotechnological applications and process design

As explained in Section 10.2, time-dependent optimization problems are defined by an objective function, express-

ing the criterion that microorganisms presumably optimize. In the case of microorganisms growing in natural

conditions, the choice of a particular objective function is difficult to make and several functions may qualify. For

example, microorganisms could be assumed to maximize their biomass over a given interval of time or minimize

the time to adapt to their new environment after a change in growth conditions. The choice may be somewhat

arbitrary and in many cases it makes sense to consider a multi-criteria optimization problem. Even more fun-

damentally, the idea that microorganisms have evolved to the point that they optimize one or several objective

functions, is controversial.

In bioengineering applications, however, the formulation of an objective function is less problematic. In this con-

text, the objective function is not assumed to have evolved through natural selection, but is rather stipulated by

the metabolic engineer in an a-priorimanner, in agreement with a practical objective. Possible objective functions

are the maximal amount of fermentation product that can be obtained from a given amount of substrate (max-

imal yield) or the minimal time to produce a given amount of fermentation product (maximal productivity). The

use of optimal control methods for process design in bioengineering is well-known [268]. Most of these meth-

ods, however, treat microbial growth as a black box and do not provide much detail about the underlying cellular

processes, contrary to the formalisms discussed in this chapter. Opening up the black box of microbial growth

allows the use of control variables that go beyond standard process parameters of the bioreactor and represent

directed perturbations of specific cellular processes.

One example is the use of coarse-grained models of microbial growth for the design of optimal operating condi-

tions for the so-called growth switch [269]. The growth switch is a synthetic regulatory circuit allowing growth of

E. coli to be arrested in order to passively reorient the resources thus becoming available towards the production

of a metabolite of interest [270]. The maximal production of this metabolite from a given amount of substrate,

within a given interval of time, was formulated as an optimal control problem. Its solution showed that the opti-

mal solution consists of two phases: a first phase of maximal biomass production followed by a second phase of

maximal product synthesis [269]. The conclusion that this two-phase procedure is optimal corresponds well with

established practice in biotechnology [271]. Very similar conclusions were attained in related work by Jeanne et

al. [272].

10.5 Dynamic fluxbalance analysis (dFBA) ofmetabolic networks

Dynamic Flux Balance Analysis (dFBA) is an extension of Flux Balance Analysis (FBA) as described in Chap-

ter 5, that can simulate the interactions between the metabolism of an organism and its dynamic envi-
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ronment. In contrast to the constant, steady-state flux solutions that are generated by classical FBA, dFBA

yields flux solutions that may dynamically depend on concentrations of extracellular metabolites, such as

sugars or other carbon sources, dissolved oxygen, or secreted wastemetabolites. Applying these fluxes to

the concentration balance of extracellular metabolites also permits to capture dynamic changes in these

concentrations due to the metabolic activity of the cells, and track the resulting overall biomass growth.

It is noted that a basic assumption of dFBA is that organisms rapidly reach intracellular steady state in

response to extracellular perturbations, and on the long run no metabolite can accumulate or deplete.

In general, a dFBA model comprises three main parts as demonstrated in Figure 10.3: the dynamic equa-

tions, in the form of differential equations, for biomass and extracellular metabolites, constraints on the

fluxes as in the FBA model, and an optimization objective that determines how to choose the optimal

fluxes.

We first consider the dynamic equations used for dFBA.

The biomass dynamics are given by

Ẋ = µX, (10.28)

where X denotes the biomass concentration, typically measured as dry mass in g L−1, and µ denotes

the growth rate, typically measured in h−1. In principle, this equation follows the equations for balanced

growth. However, instead of using simple models, like a Monod equation for the growth rate, the growth

rate is taken from the value of the biomass reaction in an FBA model (check in Chapter 5!).

Denoting the concentrations of the extracellular metabolites that are modelled dynamically as the vector

c, the dynamics for these metabolites can be formulated as the differential equation

ċ = SexchvX. (10.29)

Here, v is the flux vector for the complete metabolic network, including uptake and production reactions

for exchange metabolites, and Sexch is the stoichiometric matrix that links these reaction fluxes to the

metabolite concentrations which are balanced dynamically. Multiplication with the biomass X is neces-

sary, since the flux values in the FBA model are determined relative to biomass, whereas the concentra-

tions c of the dynamic metabolites are relative to the system volume. The equations are not yet closed,

because the fluxes v (including the growth rate µ as one element of the flux vector) still need to be deter-

mined by optimization.

As constraints, two types of constraints are used in dFBA models. A flux balance constraint as in steady-

state FBA models is applied to the concentrations of all metabolites that are not dynamically balanced

in (10.29), e.g., intracellular metabolites. This steady state constraint is given by

Sintv = 0, (10.30)

where Sint is the stoichiometric matrix that links reaction fluxes in the vector v to the steady-statemetabo-

lites. Further, upper and lower bounds need to be put on the individual reaction fluxes. In contrast to

classical FBA, where these bounds are constant, in dFBA flux bounds can depend on concentrations of

metabolites in the vector c. This is mostly applied to uptake reactions for nutrients, and often as Michelis-

Menten kinetics. For example, if ci is the concentration of a sugar substrate, and vi is the uptake reaction

for this substrate (conventionally negative in FBA models), bounds of the form

− Vi,maxci

KM + ci
≤ vi ≤ 0 (10.31)

would be used, where Vi,max andKM are the common parameters of theMichealis-Menten kinetics (Chap-

ter 3).

In recent years, dFBA is increasingly applied for the simulation of dynamic biological systems, especially

due to the promising use of genome-scale metabolic models (GSMMs) for interpreting cell physiology and
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Figure 10.3: Schematic representation of dFBA – As in FBA, the intracellular environment in dFBA is repre-
sented by a linear programming (LP) optimization problem that describes the metabolism of the microor-
ganism based on its genome-scale metabolic model (GSMM). FBA assumes that all intracellular metabolite
concentrations remain constantwhile the cells optimally distribute theirmetabolic fluxes tomaximize their
growth rate and hence, an LP can calculate the growth rate, as well as the intracellular and exchange fluxes
of the GSMM. The calculated growth rate and exchange fluxes can be used to update the extracellular envi-
ronment. The extracellular environment in dFBA is represented by ordinary differential equations (ODEs)
that describe the mass balance equations for biomass and metabolites found outside of the cell. More-
over, the intracellular GSMM and the extracellular mass balance equations can be linked through kinetic
rules for substrate uptake, like the Michaelis-Menten equations, that can raise concentration-dependent
constraints for exchange fluxes and predict growth rate dependencies on substrate concentrations.

evolution, as well as for guiding metabolic engineering and bioprocess design and optimization [273, 274,

275]. The dFBA applications based on GSMMs include the bacteria Escherichia coli [276] and Lactococ-

cus lactis [277], as well as the yeast Saccharomyces cerevisiae [278, 279, 280, 281]. However, the majority

of dFBA applications use small-scale metabolic models, most of which include less than 100 reactions.

Such applications include models of bacteria, like Escherichia coli [282, 283, 284, 285] and Corynebacterium

glutamicum [286], models of yeast [287], but also plant and animal models, such as a model of the core

metabolism of Arabidopsis thaliana [288].

It is noted that most of the dFBA applications for microorganisms simulate microbial fermentations un-

der batch or fed-batch conditions. Since dFBA can be used for the analysis, control and optimization of

biochemical processes, many dFBA applications focus on either dynamic metabolic engineering or opti-

mal control of bioreactors, or both simultaneously. Dynamic metabolic engineering studies can predict

the effect of strain gene insertion and deletion on the dynamic behavior and productivity of a bioprocess

[278, 276, 279], while optimal control of batch or fed-batch operation of bioreactors is important for the

production of desired chemicals [278]. Finally, dFBA has also been expanded for the study of microbial

communities, where each microorganism is represented by a linear program (LP) that is solved indepen-

dently [289, 290, 291]. Co-culture simulations with dFBA can predict possible consortia compositions, as

well as metabolic engineering approaches to improve the productivity of the consortia, but they are out

of the scope of this chapter.

Coming to themathematical formulation of dFBAmodels, dFBA is an optimization problem coupled with a

systemof ordinary differential equations, that can be solvedwith the help of variousmathematical and nu-

merical techniques. Even though dFBA was first introduced in 1994 [282], it was not formalized until 2002

[283]. The existing formalized solution approaches that are going to be discussed here involve the static

optimization approach (SOA), the dynamic optimization approach (DOA), and the direct approach (DA).

More recently, reformulation approaches and surrogate models for the optimization problem have also

been proposed in order to ease the computational complexity of dFBA simulations. This complexity arises

from several characteristics of dFBA. More specifically, the solution of dFBA problems faces challenges in

terms of:

1. problem size and scalability: As the size of the metabolic network increases, the computational cost in-

creases. For this reason, simulations that involve large genome-scale metabolic models or multispecies
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microbial communities are limited.

2. stiffness: The stiff behavior of dFBA has been observed in many cases, such as the simulation of the

diauxic growth in E. coli [283].

3. nonlinearity: The presence of nonlinear constraints or objective functions can significantly increase the

computational cost.

4. feasibility: The intracellular optimization problem can become infeasible and lead to failure of the inte-

gration of the extracellular ODEs.

5. differentiability: The optimal value of the intracellular optimization problem may not be continuously

differentiable, which poses an obstacle when dFBA is used for optimal control or parameter estimation.

6. non-unique solutions: The solution of the intracellular optimization problem is usually not uniquewhich

can make fluxes unrealistically “jump” between different optimal solutions.

Static Optimization Approach (SOA) divides the total time horizon of the dFBA simulation into several

smaller time intervals. The optimization problem is solved to obtain the flux distribution at the beginning of

each time interval, and then the ODEs are integrated over the time interval with this fixed flux distribution.

The dynamics calculated from this time step are used to constrain the optimization problem solved at

the beginning of the next time interval, and the process is repeated until the end of the simulation time

is reached. SOA can be implemented easily with the use of an Euler scheme for integrating the system

and a suitable existing LP solver for solving the FBA at each time step. SOA is also implemented in the

constraint-based reconstruction and analysis (COBRA) toolbox for MATLAB [292] which can perform dFBA

simulations. Since its implementation is relatively simple, SOA has been widely used in studies for the

diauxic [283, 285], aerobic and fermentative [282, 276] growth of E. coli, for S. cerevisiae fermentations

[287, 280, 281], as well as for the metabolism underlying plant growth [288]. Many of these applications

include larger-scale or genome-scale metabolic networks, due to the scalability of SOA. However, themain

drawback is that SOA is inefficient and can become computationally expensive because it has to solve the

optimization problem at each time step. This can be challenging for most dFBA problems which are stiff

and require small time steps to ensure accuracy, convergence, and stability of the solution.

Dynamic Optimization Approach (DOA) follows closely the general dynamic optimization framework de-

scribed in Section 10.2: an objective function that depends on the dynamic states of the system over

the complete time horizon of interest is formulated, and the dynamics (10.28)–(10.29) and algebraic con-

straints (10.30)–(10.31) are added as optimization constraints. In other words, DOA discretizes the total

time horizon of the dFBA simulation, and then transforms the dynamic optimization problem into a non-

linear programming (NLP) problem, which is solved once by simultaneously optimizing over the entire time

of the simulation. In this way, DOA obtains the time profiles of fluxes and metabolite concentrations in

the system, and allows the formulation of a dynamic objective function, which could provide useful infor-

mation about the design of genetically modified metabolic networks or the maximization of bioprocess

productivity. Because of this characteristic, DOA is often used in dynamic metabolic engineering, param-

eter estimation and optimal control applications. For example, DOA has been used for simulating the

diauxic growth of E. coli [283, 293]. On the downside, even though the optimization problem does not

need to be repeatedly solved like in SOA, the single NLP of DOA can become easily intractable, as its di-

mension increases with the fineness of time discretization. Additionally, DOA has been mainly limited to

small-scale metabolic networks, since it cannot be easily applied to genome-scale metabolic networks due

to the large number of variables and constraints that are introduced in the NLP as the size of the network

increases.

Direct Approach (DA) has been formulated more recently than SOA and DOA, and directly includes the

LP solver for the FBA in the right-hand side evaluator function of the ODEs. In this way, it can take advan-

tage of existing ODE integrators with adaptive step size and error control that can reduce the number of

integration steps and provide better solution accuracy compared to SOA. DA has been implemented in

the ORCA toolbox [294], which complements the constraint-based reconstruction and analysis (COBRA)

toolbox for MATLAB [292]. Furthermore, DA has been used for studying the (an)aerobic growth of wild-

type and engineered E. coli strains [284], the aerobic growth of Corynebacterium glutamicum on glucose
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Math box 10.B DFBAlab

In order to address some of the computational challenges of dFBA, Höffner, Harwood, and Barton proposed a

simulator for dFBA, which was initially coded in FORTRAN [297], but gained popularity when implemented in MAT-

LAB with the name Dynamic Flux Balance Analysis laboratory (DFBAlab) [291], and more recently in Python [298].

It is noted that the DFBAlab is compatible with the COBRA toolbox [292]. Based on this dFBA simulator, it is not

necessary to resolve the LP each time the right-hand side of the ODEs is evaluated and consequently, the solution

process becomes faster. This is possible because the FBA solution at an initial time can be used to compute future

optimal solutions by detecting changes in the active set or by computing the optimal basis of the FBA solution

[299]. Unfortunately, such formulations need to continuously monitor the active set of the LP, which increases

with the size of the metabolic network, or need to choose a basis for the optimal solution that is most likely to re-

main optimal as the simulation proceeds [299]. The latter is challenging since the optimal basis can be non-unique

even for a unique optimal solution. Nevertheless, DFBAlab manages to reduce the number of times that the LP is

resolved, and also avoids obtaining infeasible LPs and numerical failure by using the LP feasibility problem and the

Karush-Kuhn-Tucker (KKT) optimality conditions of the FBA problem (see below). In addition, the differentiability

problem could be solved with the help of non-smooth analysis which provides optimality conditions in terms of

sub-gradients or generalized gradients, for convex and non-convex functions respectively. Furthermore, to tackle

the issue of primal multiplicity of the FBA problem, DFBAlab performs lexicographic optimization .

and xylose in biorefinery simulations [286], as well as the aerobic and anaerobic growth of wild type and

engineered S. cerevisiae strains [278, 279, 280]. Some of these applications involve dynamic metabolic en-

gineering for product maximization, and many of them include genome-scale metabolic networks, since

DA is relatively easily scalable like SOA.

However, DA requires the LP to be resolved at least once, every time the right-hand side of the ODEs is

evaluated [295]. This can make DA computationally demanding, especially for larger metabolic networks.

Another major challenge is that when evaluating the right-hand side of the ODEs close to the boundary of

feasibility, the LP can become infeasible and make the dFBA simulation fail. The LP can become infeasible

either because it is really infeasible and the simulation should be terminated, or because the ODE inte-

grator becomes unable to evaluate the right-hand side of the ODEs and the simulation is discontinued, or

erroneous death phase messages are being displayed. The latter can happen as dFBA simulations involve

discrete events that correspond to switches in the active set of the LP solution. More specifically, different

bases for the optimal solution of the LP can emerge at each time step. Moreover, at the points of change

of the active set, the dFBA model is not differentiable, since the optimal value of the LP as a function of

the right-hand side of the constraints is not continuously differentiable. This is a problem because the

first and second derivatives of the model must be computed when dFBA is used for optimal control or

parameter estimation applications. Finally, another drawback emerges due to the primal multiplicity of

the LP. As it is well-known, FBA is formulated as an underdetermined problem and therefore, the LP does

not have a unique solution [296]. Non-unique optimal reaction fluxes can lead different ODE integrators

to different results.

10.6 Concluding remarks

One approach for understanding the response of microorganisms to changes in their environment is to

assume that this response has been optimized by evolution. That is, the regulatory mechanisms control-

ling the response optimize an objective, or a trade-off between competing objectives, subject to a variety

of physical and biochemical constraints. This approach gives rise to dynamic optimization problems (10.1)-

(10.4) that can be solved by techniques from optimal control theory. Three examples of such problems

were considered in this chapter: dynamic optimization of enzyme expression in metabolic pathways, dy-

namic optimization of coarse-grained models of cellular growth, and dynamic flux balance analysis. This

does not exhaust the range of possible problems that can be considered. One example is the combination

of the resource allocation perspective with dynamic flux balance analysis [293].
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Math box 10.C Lexicographic Optimization

Lexicographic or hierarchical optimization involves the solution of a series of LPs with auxiliary objectives ranked

in priority order. The use of auxiliary objectives reduces the feasible space and leads to a unique optimal solution,

while the auxiliary objectives can have specific biological meanings and can be selected based on prior knowledge

about the organism [251]. Some of the most-used auxiliary objectives are based on the assumption that evolu-

tion leads to the exclusion of inefficient pathways so that cells can biosynthesize the smaller possible number of

enzymes. Examples of such auxiliary objectives include the minimization of enzyme cost [300], the minimization

of the total reaction flux [301], and theminimization of the number of active reactions [302]. However, it has been

shown that such objectivesmay not be suitable for some engineered cells. In general, it is not trivial to find a series

of auxiliary objectives that are consistent with experimental data, assure uniqueness and preserve continuity of

the optimal solution. In some cases, even when all auxiliary objectives have been used, hierarchical optimization

cannot ensure the uniqueness of the dFBA solution. Apart from the use of auxiliary objectives, auxiliary rules or

auxiliary parameters have also been proposed to address the primal multiplicity of FBA. For example, geometric

methods have been proposed to identify a unique distribution of reaction fluxes for FBA [303], even though there

is no biological evidence to justify such methods.

Some of the predictions obtained by means of dynamic optimization seem to be supported by available

experimental data, such as the time-ordering of enzyme expression in a linear pathway. Other predictions

cannot currently be tested or may not be consistent with the available experimental data, such as the

dynamical ribosomal protein synthesis pattern. The contradiction between a predicted optimal response

and the observations is interesting, because it indicates that some of the assumptions underlying the

problem need to be revised. The model may not account for all relevant processes taking place in the

cell, important constraints may have been ignored, or the objective may not capture the actual processes

taking place.

The solution of a dynamic optimization problemmay be different from the concatenation of the solutions

of repeated static optimization problems defined over short, consecutive time intervals making up the

time horizon. For instance, the optimal pattern of resource allocation over a time horizon may involve the

accumulation of a reserve of unused resources that, while being wasteful in the short run, is beneficial

when the whole time interval of interest is considered. One example was given in the introduction of this

chapter, concerning the expression ofmaltose enzymes in the presence of lactose [247]. Another example

is the accumulation of glycogen in cyanobacteria during daylight, providing the energetic resources for

maintenance metabolism in the night time [244].

The analysis of the growth of microorganisms using dynamic optimization critically depends on the choice

of an appropriate objective function. In the examples discussed above, optimization was performed with

respect to a single objective, e.g., the maximal accumulation of biomass over a time interval or the min-

imal time to deplete a given amount of substrate. It is plausible, however, that microorganisms have

evolved under the necessity to satisfy several objectives simultaneously. This can be taken into account

by formulating a weighted sum of the different objective functions, such as the simultaneous minimiza-

tion of throughput time and investment in enzymes in Eq. (10.18). Another approach is to generalize the

optimization problem to a multi-objective optimization problem, with sets of Pareto optimal solutions,

each providing a trade-off betweenmutually conflicting objectives. One example of such a multi-objective

optimization problem is given by a generalization of the dynamic optimization of enzyme expression in

metabolic pathways in Section 10.3, with the double objective of minimizing the time to consume a given

amount of substrate andminimizing the concentration of (possibly toxic) intermediate metabolites [305].

Instead of making a-priori assumptions about the objectives presumably optimized by microorganisms,

one could try to infer the latter from the experimental data. This inverse optimization approach leverages

the large amounts of time-course data on the dynamic response of microorganisms to environmental

perturbations that have accumulated in the past decade. Inverse optimization requires the solution of

complex inverse optimal control problems that have been little explored until now [250].
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Figure 10.4: Example result of a dFBA simulation for the E. coli core model [304] performed with DFBAlab
– (A) Illustration of dynamic metabolites and relevant exchange fluxes. Extracellular metabolites use mass
concentration (g L−1), exchange fluxes are in molar amount per dry biomass and time (mmol gDW−1 h−1).
(B) Concentration-dependent constraints applied to the exchange fluxes during the dFBA simulation. (C)
Differential equation model for biomass concentration X and metabolite mass concentrations. Growth
rate µ and exchange fluxes v∗ (in red) are optimal values from the underlying FBAmodel. mO2 ,mG,mE,mA

are molar masses of O2, glucose, ethanol, and acetate, respectively. kLa = 8.5 h−1 is the volumetric mass
transfer coefficient for oxygen. (D) Simulation results for concentrations of biomass and metabolites. We
can observe four growth phases: aerobic growth on glucose with production of acetate, anaerobic growth
on glucose with production of ethanol and acetate, aerobic growth on acetate, and a stationary phase.
(E) Simulation result for oxygen concentration in the liquid medium. Oxygen is depleted in the second
growth phase due to mass transfer limitations, but replenishes at the start of the third phase. (F) Penalty
function time course. Increases of the penalty function indicate periods where the underlying FBA model
is infeasible. Here, this occurs when the ATP maintenance constraint cannot be satisfied due to a lack of
substrates, and happens in this simulation during a brief period where the switch from glucose to acetate
as a substrate takes place, since oxygen needs to be replenished first, and in the stationary phase.
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balance analysis, with an example of diauxic growth in E. coli.
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optimality.

Problems

Problem 10.1 Interpretation of abrupt switches

The solutions of some of the optimization problems in section 10.3 exhibit abrupt switches in enzyme

concentrations (”bang-bang behavior”), which in reality are not possible.

1. What would be possible adjustments of the models to make the predictions more realistic? (Hint:

consider explicit modeling of enzyme synthesis and enzyme degradation or dilution by growth.)

2. What predicted behavior would you expect for these modified models?

3. In these extended models, which possibilities would the cell have to speed up the adaptation of en-

zyme concentrations? Under what circumstances could this provide an actual advantage?

Problem 10.2 Accounting for metabolites

The resource allocation model in Section 10.4 defines biomass as being composed of proteins only,

neglecting notably the (small) contribution of metabolites. This has the disadvantage of putting no con-

straints on metabolite concentrations, which is not realistic from a biological point of view.

1. What would be a possible adjustment of the model to integrate metabolites into the biomass com-

position, under the assumption that the total biomass density remains constant? (Hint: consider the

definition of growth rate in Eq. (10.26).)

2. How would the objective function for this model (Eq. (10.27)) need to be adapted accordingly?

3. How would you expect the resulting constraint on metabolite concentrations to affect the predicted
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behavior of the microbial self-replicator?
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Chapter 11

Diversity of metabolic fluxes in a cell

population

Andrea De Martino and Marcelo Rivas-Astroza

Chapter overview

Even in clonal populations, cells appear to be strongly heterogeneous in terms of, e.g., protein levels,

RNA levels, sizes at birth or division, interdivision times and elongation rates. Part of this variability

is likely due to the inherent stochasticity of gene expression at the level of single cells. It is how-

ever known that heterogeneous populations may possess an evolutionary advantage, for instance in

variable environments or under stress. Despite appearing to be at odds with the idea of optimality

presented in the previous Chapters, metabolic diversity can be described and modeled within the

constraint-based framework introduced in the previous Chapters. Specifically, a statistical represen-

tation of heterogeneous populations can be obtained by defining suitable probability distributions

on the flux polytope. This Chapter addresses

◦ the different sources of variation that affect microbial metabolism along with the mechanisms that

may favor higher variability,

◦ the methods devised to represent heterogeneous microbial populations within the framework of

constraint-based models, and

◦ how these approaches connect to the optimality scenario presented in the previous Chapters.

11.1 Introduction

The theory of cellular metabolism developed up to this point through constrained-based models (CBMs)

relies crucially on some type of optimality assumption: among all viable flux states encoded in the flux

polytope by mass-balance, thermodynamic and regulatory constraints, cells strive for those that maxi-

mize a physiologically motivated objective function. For E. coli cells growing on carbon-limited substrates,

for instance, it is reasonable to take such a function to be the growth yield. At the very least, these optimal

states provide reference points to gauge cellular behavior. In this respect, having a good grasp of what

makes a configuration of fluxes through the network ‘optimal’ with respect to a certain objective is rather

important from a theoretical viewpoint. On the other hand, it is not easy to prove directly in an experi-

ment that a certain function is actually being optimized (in any physical system, let alone in a microbe or

a microbial population). An optimality assumption can usually be corroborated a posteriori, e.g. by com-

paring optimality predictions to experimentally measured fluxes or growth rates [309, 310], or indirectly,

173
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e.g. by showing that, in a given growth medium, certain metabolic enzymes are expressed at just the level

ensuring maximal growth [311]. By looking at the behavior of individual cells in a population, however,

one cannot help but notice a salient feature: their diversity. Individual cells are macroscopically heteroge-

neous in terms of parameters like interdivision times, elongation rates, sizes at birth or division, etc. This

suggests that a corresponding diversity is present at the level of intracellular processes like cell cycle, gene

expression and, of course, metabolism. Quantitative experiments probing populations at single-cell res-

olution (see Experimental Methods Box 11.A) can nowadays characterize such a diversity in some detail.

Among the remarkable outcomes of these studies is that, when analyzed through a lens that accounts for

diversity, bacterial growth displays signatures of universality [312, 313, 314], suggesting the existence of

general, system- and condition-independent control mechanisms (e.g. of cell division and growth) that do

not change with specifics like strain, quality of medium, etc. Identifying these mechanisms yields robust

insight (and predictive capacity) into the physiology of microbial systems (see also Chapter on Control of

cell division and coordination with other cell-cycle processes).

Experimental methods 11.A Quantitative methods for single-cell analysis

At the very minimum, quantitative experimental characterization of cell-to-cell diversity in microbial populations

requires (i) the possibility of achieving steady-state cell growth in controlled environments, and (ii) the possibility

of identifying individual cells within a population. The two setups that are most important for the present Chapter

(andmost widely used in general for the study of cell-to-cell heterogeneity in microbial systems) are the following.

◦ High-resolution optical microscopy of bacteria growing on agarose pads. Optical microscopy is the first and

still most used technique to address cellular individuality [315]. Besides giving direct information about the

macroscopic growth dynamics of individual cells [316, 314], it can be used in conjunction with gene expression

reporters like fluorescent proteins to quantify diversity in gene expression levels [317] and dynamics [318].

Optical means usually allow to reliably follow the expression of a relatively small number of genes. In addition,

however, they can also provide information about many other aspects of bacterial physiology, like motility,

chemotaxis or the spatial self-organization of colonies.

◦ Microfluidic ‘lab-on-a-chip’ devices. In essence, these techniques allow to confine single cells or small lineages

thereof in controlled environments for long-term data acquisition [319]. A well-known example is the ‘mother

machine’ [320]. In a mother machine cells grow in narrow (ca. 1 µm) microfluidic dead-end channels such that

(a) all cells in the same channel are daughters of a mother cell stuck at the closed side of the channel; (b) a main

feeding channel carries away cells that grow out of the length of dead-end channels (which suffice to contain

a few cells, usually 5 to 10); and (c) nutrient in-flow and waste out-flow from the feeding channel ensure a

constant medium in all dead-end channels via diffusion. This setup effectively keeps the population size fixed.

Growing bacteria can then be imaged and analyzed by standard means like time-lapse microscopy to obtain

the statistics of quantities like the interdivision time or the size at birth at stationarity [313].

The setup of mother machines has the advantage that cells can be followed for many more generations than on

agarose pads, since the latter tend to become overcrowded after a limited number of rounds of divisions. On

the other hand, agarose pads offer a more natural environment for cell division. In addition to these, a host of

other techniques are being increasingly refined and used to probe single-cell properties and behavior in bacte-

rial populations, including single-cell metabolomics by mass spectrometry [321], nanoscale secondary ion mass

spectrometry (nanoSIMS) [322], and single-cell transcriptomics [323].

It is not hard to guess why a bunch of identical cells sharing the same medium would, say, elongate at

different rates. For one, gene expression has a stochastic component, from e.g. the random diffusion of

transcription factors to targets to the thermal noise driving the on/off dynamics of transcription events.

We also know that the cell cycle can be highly variable [324]. And other ‘natural’ sources of variance can

be found in the dynamics of expression in genetic circuits, aging, asymmetric partitioning of cellular re-

sources at division, inter-cellular interactions, and epigenetic modifications [325]. In other terms, a degree

of variability across a population is to be expected. The question, however, is, how can variability be rec-

onciled with the optimality picture? And related to this: can we explain cell-to-cell differences in terms of

some other, perhaps more involved, optimality criterion? Are there cases in which variability is optimized?

Can we describe quantitatively a microbial population in ways that account for inter-cellular diversity?
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Figure 11.1: Single optimum versus multiple optima in the flux polytope – (A) A two-dimensional flux poly-
tope (shaded area) with non-negative fluxes and the defining constraints shown as dashed lines. (B) The
linear objective function represented by the blue line has a unique maximum (red dot). (C) The linear ob-
jective function, represented by the blue line parallel to one of the constraints, has a continuous set of
maxima points which coincides with the segment shown in red.

Note that cell-to-cell variability is inherently a population-level concept. Addressing it therefore requires a

framework that is capable of clearly distinguishing single-cell properties from population-level ones.

It is definitely possible to explain cell-to-cell variability within an optimality framework (see Chapter on So-

lutions of constraint-basedmetabolic models). For example, one could say that, in appropriate conditions, all

microbes in a population are optimal, but the optima are slightly different for different cells. As a matter

of fact, optimal states in CBMs need not be isolated points belonging to the flux polytope. There can in fact

be infinitely many flux vectors that maximize an objective function (this happens, for instance, when an

objective function attains its maxima on one of the edges or faces of the polytope, see Figure 11.1). This

implies that identical cells subject to the same constraints and sharing the same objectivemay end up hav-

ing different metabolic profiles despite carrying the same value for the objective function. In this scenario,

diversity is induced by a very special feature of the objective function and, unless some other ingredient is

brought into the game to lift the degeneracy, all optimal states would be equally likely for cells. If having

an objective function of this type seems unlikely in a high-dimensional setup such as metabolism, one

may imagine a scenario in which all cells optimize the same objective but with slightly different constraints

(i.e. in a slightly different polytope, e.g. due to small variations in regulatory constraints, energy demands,

or nutrient uptakes). In this case, each cell would solve its own optimization problem, ending up having,

along with a different metabolic profile, a slightly different value of the objective function. Metabolic diver-

sity is therefore induced by variability in the constraints. But it is also possible that, if cells are subject to

fluctuating exogenous constraints (e.g. variable nutrient levels), they would prefer to maximize their, say,

growth rate averaged over conditions, especially if fluctuations occur on faster timescales than those over

which metabolic reactions equilibrate. In such a case, the average growth rate would be maximum (given

the external variability), but other than that every cell could carry a different growth rate and a different

metabolic profile. In this respect, one can say that diversity is now being optimally adapted to external

conditions, or one may even think that different cells have different objective functions. This scenario,

possibly unrealistic for growing microbial populations but not for other cell types (think for instance of the

mixture of neurons with high energy demands and glia with low energy demands in the brain), would also

lead to heterogeneous flux profiles and objectives. And so on.

It is clear from these examples that, in order to represent heterogeneity within CBMs, one must, first and

foremost, clarify the origin of heterogeneity as much as possible. Next, it is necessary to shift from the

language of individual flux vectors belonging to the flux polytope to that of ensembles of flux vectors or,

more reasonably for large populations, of probability densities defined on the flux polytope. This transi-

tion is less trivial and more momentous than it sounds and, together with the causes of variability, is the

core subject of the present Chapter. We shall begin by giving a more precise characterization of the dif-

ferent types and sources of diversity that can be considered when modeling metabolic networks. Next,

we shall introduce probability densities on the flux polytope and briefly discuss a few simple examples.

We shall then address the general problem of using probability densities to represent heterogeneity and
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Figure 11.2: Minimalmetabolic networkwithmultiple optima – (A) Toy networkwhere the topmetabolite is
imported by reaction v1 and processed by reactions v2 and v3, which convert it into the bottommetabolite
that is then excreted via v4. When fixing v1 = 10, the maximization of v4 –a proxy of biomass growth rate–
under mass balance results in v4 = 10. There are however infinitely many flux vectors (defined by the
condition v2 + v3 = 10) that are coherent with this solution, including those indicated by red blue and
green flux values. (B) The subspace of optimal solutions forms a line (dark purple) in the space of feasible
flux vectors (Problem 11.1 ). The orange-shaded triangle represents the flux polytope for 0 ≤ v1 ≤ 10.

uncertainty, most notably that seen in empirical data. Finally, we will show how these ideas can be used

to generalize the notion of optimality to heterogeneous populations.

11.2 Sources of variability and uncertainty in metabolism

Metabolic heterogeneity is widespread among clonal populations of prokaryotic and eukaryotic cells. Pop-

ulations of Escherichia coli display diverse cell-to-cell conversion yields of glucose into final products, such

as fatty acids and tyrosine [326]; not surprisingly, the intracellular concentration of co-factors, including

ATP, also vary significantly between cells [327]. Saccharomyces cerevisiae metabolic states have been ob-

served to change over time for each cell. For instance, a single budding yeast does uptake oxygen before

duplicating its genetic material, but it changes to an anaerobic metabolism once DNA duplication starts in

order to prevent mutations related to free radicals [328]. Animal cells within a single tissue also show het-

erogeneous metabolisms. Non-small cell lung cancer display a remarkable diversity of preferred carbon

sources. Within the tumor, some cells consume glucose and produce lactate, whereas others divert their

metabolism to consume lactate as a carbon source [329].

The root cause of this metabolic heterogeneity is manifold, including uneven distribution of nutrients in

the environment, asymmetric cell partitioning at division, and noise in gene expression [330, 331]. These

effects are stochastic, and prevent the determination of a cell metabolic state in advance. This type of

uncertainty is rooted in the nature of metabolism itself. We refer to it as objective uncertainty.

There is however another type of uncertainty at play, one that comes from our models of metabolism. In

any metabolic network reconstruction, there can be missing reactions [332], errors or lack of knowledge

about the directionality of certain reactions under in vivo conditions [333], and errors in the experimental

estimates of certain parameters –such as exchange fluxes, or the weights of the biomass reaction [334].

Evenwhen using a bona fidemetabolic network conditioned by preciselymeasured parameters, optimality

principles can lead to a reduction of the viable polytope as opposed to the identification of a single ‘optimal’

state [335] (see Chapter on Solutions of constraint-based metabolic models). This is exemplified in the net-

work of Fig. 11.2.A, where the maximization of v4 only reduces the viable polytope to a subspace defined

by the line shown in Fig. 11.2.B. Uncertainties that stem from modeling uncertainties can be categorized

as subjective, as they arise solely from an observer’s imperfect knowledge.

As wewill see in the following, although objective and subjective uncertainties have different sources, both

can be modeled using probability theory.
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11.3 Probability densities over the flux polytope

In what follows, we shall denote the convex flux polytope by P and a generic flux configuration in P by

v = {vi}N
i=1. A probability density p defined on P is any non-negative function such that∫

P

p(v)dv1 · · · dvN ≡
∫
P

p(v)dv = 1 . (11.1)

Notice that the integral over P implicitly encodes two types of constraints: mass-balance equations (i.e.

Sv = 0) and ranges of variability of the form vi,min ≤ vi ≤ vi,max (see Chapter on Solutions of constraint-

based metabolic models). The quantity
∫
P
dv represents therefore the a priori volume of P (which, un-

derstandably, is far from simple to calculate for high-dimensional polytopes like those corresponding to

genome-scale metabolic network reconstructions [336]). As usual, p(v) can be interpreted as the relative

likelihood of flux configuration v: if we imagine that a cell is assigned a flux configuration by “randomly

sampling it fromP” using the rule described by p, then p(v)dv represents the probability that the cell’s flux

configuration will lie in a small volume dv around v. It is clear then that probability densities onP provide

a mathematically convenient way of describing the metabolic state of large populations (or ensembles) of

cells at a given time, provided one can assume that cells have the samemetabolic network and are subject

to the same constraints, so that P is the same for all of them. For the population of cells described by p,

the probability density clearly contains all the statistics of metabolic fluxes, frommean values to variances

to correlations. For instance, by integrating p over all fluxes except the i-th, one obtains the marginal

probability density of flux vi, i.e. ∫
P

p(v)dv\i = pi(vi) , (11.2)

where the subscript \i corresponds to ‘except for the flux of index i’ (so dv\i = dv1 · · · dvi−1dvi+1 · · · dvN ).

And from pi we can immediately retrieve the statistical features of flux vi (e.g. mean value, variance, etc).

Let us make a few simple examples.

◦ If we assume that all cells in the population maximize the same objective function, and that there is no

degeneracy in the optimal state, then

p(v) = δ(v − v?) , (11.3)

where v? denotes the (unique) objective-maximizing flux vector and δ(x) denotes Dirac’s δ-distribution.
◦ If we can make no assumption on the cells’ metabolic activity other than it has to be compatible with

the constraints encoded by P, then any flux vector v ∈ P is equally likely to occur in a population. This

means that p is constant on P. Specifically, its value must be equal to the inverse of the volume of P:

p(v) =
(∫

P

dv′
)−1

(v ∈ P) . (11.7)

For any given flux polytope, this distribution can be sampled at least in principle using the methods

described in the Chapter The space of metabolic flux distributions.

◦ Imagine having a dataset derived from a 13C labeling experiment (mass spectrometry) that gives the

mean value vi of every flux in the network (the average being over the population of cells used in the

experiment), together with an experimental error σi (which likely conflates different sources of uncer-

tainty of which we may know very little, if anything at all), such that the experimental population-level

estimate of vi is vi ± σi. Let us assume that we know enough about the experiment to be able to de-

fine a flux polytope for the cell type (P), and that all empirically measured averages and errors are in

P. Then, if we want to describe the population by a probability density in P that is uniform over the

domain defined by experimental estimates, we can set

p(v) =
N∏

i=1

θ(vi + σi − vi)θ(vi − vi + σi)
2σi

(v ∈ P) , (11.8)
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Math box 11.B Dirac’s δ-distribution

For our purposes, the defining property of the δ-distribution in one dimension is the following: if a variable x is

δ-distributed around the finite value x?, then, for any continuous function f ,∫ +∞

−∞
f(x)δ(x − x?)dx = f(x?) . (11.4)

This means that, intuitively, δ(x − x?) = 0 everywhere on the real axis except at x?, where its value is +∞. Such a

function only makes sense within an integral. In this respect, (11.3) should be seen as an abuse of notation, albeit

a convenient one. There are however several ways to represent the δ-distribution that comply with the above

requirement. For example, one can define∫ +∞

−∞
f(x)δ(x − x?)dx := lim

σ→0

∫ +∞

−∞
f(x)

1
√

2πσ2
e

− (x−x?)2

2σ2 dx

= lim
σ→0

∫ +∞

−∞
f(x? + σy)

1
√

2π
e− y2

2 dy = f(x?) . (11.5)

The generalization to n > 1 dimensions is obtained by straightforwardly assuming δ(x − x?) =
∏n

i=1 δ(xi − x?
i ),

so that ∫
Rn

f(x)δ(x − x?)dx = f(x?) . (11.6)

Because the δ-distribution effectively has non-zero probabilitymass only at a single point, it is reasonable to expect

(11.6) to hold also if the integral is carried out over a compact domain D, provided x? belongs to D. This is indeed

the case, although the proof requires some work. For a quick guide to the many other interesting and useful

properties of the δ-distribution that are beyond our current scopes, see [337].

where θ(x) denotes the Heaviside (step) function defined as (Problem 11.2)

θ(x) =

{
1 for x > 0

0 for x < 0
. (11.9)

◦ (Boltzmann distribution) Let f(v) denote a generic function of the flux vector, such as f(v) =
∑N

i=1 civi,

with ci prescribed constants. The Boltzmann distribution is defined as

p(v) = 1
Z(β) e

βf(v) (v ∈ P) , (11.10)

where β is a constant and Z is a factor ensuring normalization (i.e. (11.1)), namely Z(β) =
∫
P
eβf(v)dv.

The behavior of p is simple to grasp in three limits.

1. For β → 0, (11.10) reduces to (11.7): in other words, p becomes uniform over P (and therefore insen-

sitive to f ).

2. For β → +∞, p effectively concentrates on the flux vector v? that maximizes f (which for simplicity

we assume to be unique). To see this at a heuristic level, it suffices to notice that, for any v 6= v?, the

ratio
p(v?)
p(v) = eβ[f(v?)−f(v)] (11.11)

increases exponentially as β increases. Because densities are normalized, when this ratio becomes

large, p(v) must become very small. Hence, when integrated over P, the larger is β, the closer to

v? must flux vectors be in order to give a significant contribution to the integral. For β → +∞, the

only relevant contribution comes from v?, so that, effectively, p(v) ' δ(v − v?). This conclusion can

be reached more precisely using Laplace’s method (a.k.a. saddle-point approximation) to evaluate

integrals of the form
∫
Rn e

βg(x)dx in the limit β → ∞ for fixed n (see e.g. [338], Ch. 27).

3. By a similar reasoning, for β → −∞ the only relevant contribution to integrals involving p comes from

the (unique, by assumption) flux vector v? thatminimizes f , so that, effectively, p(v) ' δ(v − v?).
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β = 0 β > 0 β → ∞

p(v) ~ const. p(v) ~ eβf(v) p(v) ~ δ(v-v*)

uniform optimumBoltzmann

Figure 11.3: Boltzmann distribution on the flux polytope – The Boltzmann distribution, Eqn (11.10), morphs
from a uniform probability density to a δ-distribution concentrated on the flux vector that maximizes the
function f as β varies from 0 to +∞.

When β varies, things depend strongly on the form of f and can become rather complicated when f

is non-linear, especially when terms that involve the product of two or more fluxes (‘high-order inter-

actions’) are present. However, in the simple case in which f is linear (as outlined above), then the

probability density gradually morphs from a uniform distribution over P to a δ-distribution around the

maximum of f as β increases from 0 to +∞ as shown in Fig. 11.3 (and likewise when β decreases from

0 to −∞). In this respect, the parameter β can be seen simply as a ‘degree of optimization’: the closer a

population is to optimizing f , the higher the value of β. For reasons that will become clear in the next

section, the Boltzmann distribution plays an especially important role in this Chapter (Problem 11.3).

◦ In Constrained Allocation FBA [310] (see the Chapter 9, one considers an ensemble of growth-rate max-

imization problems constructed by sampling (from a prescribed probability density) a family of random

variables representing the proteome fraction to be invested in each metabolic enzyme per unit flux of

the corresponding reaction. The idea in CAFBA is that different sets of parameters effectively corre-

spond to different cells, reflecting the cell-to-cell variability in e.g. transcription levels and protein abun-

dances. The population-level behavior is then obtained by averaging over different choices of these

parameters (i.e. over a population of heterogeneous cells). An alternative interpretation is however

possible, namely that different parameters reflect the different environmental conditions that a species

can encounter over its life process history. By averaging over parameters one obtains a growth strategy

that levels out this environmental variability. Such a strategy may be the one that cells prefer to imple-

ment e.g. when environmental fluctuations are fast (faster than regulatory timescales). In either case, in

CAFBA, randomness in a family of parameters related to the optimization problem induces randomness

in the solutions, and therefore a probability density over the feasible space. This probability is unfor-

tunately hard to write down explicitly in the case of CAFBA due to the complexity of the optimization

problem. Its marginal distributions are however easy to calculate numerically. Two of them, specifically

for the single-cell growth rate and acetate excretion fluxes, are shown in Fig. 2 in [310].

We could providemore examples but the keymessage of this section should already be visible: probability

densities on the flux polytope are useful (a) when one wants to explicitly represent how uncertainties,

experimental knowledge (with errors), or variability in parameters impact our knowledge of what part of

the flux spaceP is occupied by themetabolic states that occur in a truemicrobial population; and (b) when

one is interested in representing an optimal (in some sense) population in a way that explicitly accounts for

heterogeneity. If one has data (with errors), a probability density can provide a representation of the data,

as in (11.8). It can likewise describe the solution to a population-level optimization problem, and therefore

a purely theoretical prediction, as in (11.3). Or the solution to an optimization problem with uncertainty,

i.e., partial knowledge or variability in some of the parameters, in which case it represents an ‘informed’

theoretical prediction (as in the CAFBA example, where the ‘information’ injected into the problem comes

from the probability density fromwhich parameters are sampled). Or it can simply be a tool to interpolate

between extreme cases when we are unsure about how well a certain function is being optimized (as in
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(11.10)). Notice how, in our examples, different motivations activate different theoretical routes, all of

which lead to working with probability densities that have a priori different origins and meanings even

though they can be formally the same.

The two broad motivations for working with probability densities on P outlined above [i.e. (a) represent-

ing uncertainty and (b) representing optimal heterogeneous populations], pose fundamentally different

modeling challenges. In the first case, the key question is one of model selection: given some empirical

knowledge, what is the probability density on P that best represents our residual uncertainty? For in-

stance: how good of a choice for p is (11.8) given the data we had? Are there criteria that can guide our

choice of a probability density? We will briefly consider these issues in the upcoming Sec. 11.4. When at-

tempting to model optimal heterogeneous populations at the theoretical level, instead, one basically has

to generalize the problem tackled by CBMs like FBA to the case in which an optimal probability density is

searched for instead of an optimal flux configuration. We will see how this can be done in Sec. 11.5.

11.4 Representing heterogeneity and uncertainty

11.4.1 Maximum Likelihood, Maximum a Posteriori and Bayesian inference

We have seen that probability densities on P can represent, under certain assumptions, populations of

microbes whose metabolism can be described by the same flux polytope, and that different probability

densities can be surmised to model the distribution of v ∈ P when some external information (e.g. ex-

perimental data) is available. Here, we will address the following question: how can one choose the p that

best represents our knowledge about the metabolic state of a population in presence of these external

data?

To summarize the huge and highly involved set of problems behind the above (very general) question

[338] in a way that is useful for the purposes of this Chapter, we can start by assuming we have a priori

chosen a form of p that depends on certain free parameters and ask how to tailor parameters so that p

‘optimally’ matches the empirical evidence. To be concrete, let us denote by ψ the vector of parameters of

p, and by W = {w1,w2, ...,wR} a set ofR experimental samples of v. Each measurement, w, is a vector of

metabolic fluxes that ideally should include all the reactions of a metabolic network. In practice, a vector

w typically spans only a subset of all the reactions of the metabolic network, e.g. those that are amenable

to 13C labeling (TCA, glycolysis, and pentose phosphate pathways) or that correspond to exchange fluxes

that can be reliably measured (glucose and oxygen consumption, or lactate and ethanol, to name a few).

According to Bayes’ rule (we assume all variables to be continuous), the quantities

◦ p(ψ|W): the conditional probability density of the parameters given the observations (a.k.a. the poste-

rior);

◦ p(W|ψ): the conditional probability density of the observations given the parameters (a.k.a. the likeli-

hood);

◦ p(ψ): the prior probability density of parameters (a.k.a. the prior);

◦ p(W): the (marginal) probability density of observations (a.k.a. the evidence)

are related by the formula

p(ψ|W) = p(W|ψ)p(ψ)
p(W) . (11.12)

Ideally, what onewould like to know in order to ‘optimally’ set the parameters of p is how likely a parameter

set is given the data, i.e. the full posterior p(ψ|W), as it allows to quantify our uncertainty on the model

itself. One may however also consider different (less ambitious) ways to choose parameters. The three

best known methods are the following:

◦ Maximum Likelihood (ML) inference aims at finding the parameter vector that maximizes the likelihood:

ψML = arg max
ψ

p(W|ψ) . (11.13)
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Math box 11.C Gaussian model

ML is the most commonly used point estimation method. As said above, the estimated parameters, ψ̂, are com-

puted as the argument that maximizes the likelihood of the observed data, i.e.

ψ̂ = arg max
ψ

p(W|ψ) = arg max
ψ

R∏
i=1

p(w(i)|ψ) = arg max
ψ

R∑
i=1

log[p(w(i)|ψ)] , (11.15)

where in the last step we used the fact that, as far as the solution is concerned, maximizing p(W|ψ) is equivalent
to maximizing its logarithm. ML takes a familiar form if one follows, for instance, Theorell et al. [339] in modeling

data according to a multivariate normal distribution:

w ∼ N(w|ψ) =
1√

(2π)N |Σ|
e

(
− 1

2 (v̄−w)T Σ−1(v̄−w)
)

(11.16)

The parameters encompass the mean values, v̄, and the covariance matrix, Σ. That is, ψ = [v̄, Σ]. Accordingly,

p(w(i)|ψ) = N(w(i)|ψ) =
1√

(2π)N |Σ|
e

(
− 1

2 (v̄−w(i))T Σ−1(v̄−w(i))
)

, (11.17)

and

ψ̂ = arg max
v̄,Σ

R∑
i=1

[
−

1
2

(v̄ − w(i))T Σ−1(v̄ − w(i)) − log
(√

(2π)N |Σ|
)]

, (11.18)

which leads to the well-known weighted least squares estimators of mean values (ˆ̄v) and variances (Σ̂). With ˆ̄v
and Σ̄, the frequency of any vectorw can be computed fromN(w|ˆ̄v, Σ̂). Standard techniques, such as confidence
intervals, can be applied to assess the precision of ψ̂. Generally speaking, the larger the number of samples, R,

the smaller the uncertainty in ψ̂.

In standard cases, this produces a single ‘optimal’ vector ψ (hence it is called a ‘point estimator’), re-

sulting in a p that models -in a context-specific manner- the metabolic heterogeneity within the cellular

population.

◦ Maximum a Posteriori (MAP) inference aims instead at finding the parameter vector that maximizes the

posterior:

ψMAP = arg max
ψ

p(ψ|W) ≡ arg max
ψ

p(W|ψ)p(ψ) , (11.14)

where the last equality follows from the fact that p(W) does not depend on ψ. As for ML, the MAP

estimator is a point estimator.

◦ Bayesian inference aims finally at computing the full posterior distribution p(ψ|W). It is therefore a

‘distribution estimator’ rather than a point estimator.

Problem 11.4 should clarify the way in which point estimators differ from (and are less informative than)

distribution estimators in practice.

11.4.2 MaxEnt inference

According to the principle of Maximum Entropy (MaxEnt) [354], among all probability densities that are

consistent with given prior knowledge or data, the one having the largest value of the entropy

H[p] = −
∫
P

p(v) ln p(v)dv (11.19)

is the one that best represents our knowledge about the system. A classical intuitive justification of the

MaxEnt principle is most easily given for discrete variables [355].

ConsiderN cells, each of which can be found in any ofK states (what precisely defines a state is immaterial

for this reasoning). Let an assignment n = {n(i)} be given, such that n(i) denotes the number of cells in

state i (with
∑K

i=1 n(i) = N ). Because we can always exchange the states of two cells without changing n,
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Math box 11.D Inference in metabolic network modeling

In metabolic network modeling v is usually a vector of fluxes. Unfortunately, the number of samples is usually

very small [340], which may lead to ψ̂ over-fitted to the sample set. One way to overcome limited sample sizes is

to regularize the estimation procedure by incorporating prior information on ψ via the MAP estimation method

(11.14). The evidence p(ψ) in MAP can be used to encode the distribution of v values observed in previous exper-

iments or formulated as a plausible non-informative probability distribution. For example, Heinonen et al. [341]

formulated p(ψ) as a multivariate normal distribution with mean values equal to zero, and variances for each flux

adjusted to prevent fluxes extending beyond their lower and upper bounds defined in P. MAP estimation can be

considered as an ML estimation whose objective function has been augmented by the prior distribution of p(ψ).
In this sense, MAP estimation is a ‘regularized’ ML estimation, which helps prevent overfitting.

MAP estimation however does not exploit the capacity of Bayes’ theorem to explore the full set of values that

the parameters can achieve. By producing a distribution estimation of the parameters, Bayesian inference allows

quantifying the parameters’ variability. Compared to point estimation methods, though, Bayesian inference is

computationally expensive as it requires to asses how different values of p(ψ) affect p(W|ψ). Fortunately, some

families of p are susceptible to methods such as Gibbs sampling or Markov Chain Monte Carlo that offer an ef-

ficient way to compute the posterior numerically [342]. This is the case, for instance, for the truncatedmultivariate

normal distributions that Heinonen et al. [341] used for the likelihood and prior functions appearing in (11.12).

The posterior can then be used to derive statistical features of quantities that depend on ψ, e.g. metabolic fluxes.

In practice, most parameters underlying themechanisms that govern cellularmetabolism -e.g., enzymes’ allosteric

regulation or the local conditions within cells’ organelles- remain unknown. Various hypotheses can be advanced

to close this knowledge gap. Alas, it is not uncommon to have conflicting scenarios. For instance, to explain

overflowmetabolism in S. cerevisiae and E. coli [343, 344, 345], numerous plausible explanations have been pushed

forward, including ATP savings for the production of non-oxidative enzymes (which by being smaller, compared to

their oxidative counterparts, require less ATP in their synthesis) [346, 347], limited uptake rates capacity [348], and

an upper limit on the dissipation of Gibbs energy [349]. (See [350] for an excellent review of optimization-based

explanations.) Because eachmechanism can be encoded through a different prior, it is clear that the choice of the

prior is a delicate matter in Bayesian inference. Generally speaking, the choice of the prior becomes less and less

problematic the more data we have, i.e. the better sampling we have of the state space of the system. However, if

data is scant, the prior will leave an important imprint on the resulting posterior. In these cases, a careful selection

of the prior is paramount. Among the methods most commonly employed are (a) the construction of empirical

priors (namely priors that encode previous knowledge about parameters), (b) the use of so-called “non-informative

priors” (i.e. priors that reflect ‘vague knowledge’ about parameters, like the fact that a certain parameter is non-

negative) [351], and (c) the selection of priors based on the Maximum Entropy principle (see below) [352, 353].

there are multiple ‘microscopic’ ways to realize an assignment n. Combinatorics tells us that the number

of different microscopic realizations of an assignment n is given by

N(n) = N !∏K

i=1 n(i)!
. (11.20)

If all n(i)’s are large enough, we can use Stirling’s approximation (n! ' (n/e)n) to see that

N(n) ' eNH(n) , H(n) = −
K∑

i=1

n(i)
N

ln n(i)
N

≡ −
K∑

i=1

p(i) ln p(i) ≡ H(p) , (11.21)

where p(i) denotes the fraction of cells in state i (or, equivalently for us, the probability to find a cell in state
i). H is the entropy of the assignment n, and is in essence a measure of the microscopic degeneracy that

underlies a macroscopic arrangement. The distribution p = {p(i)} carrying the largest entropy subject to
certain constraints is therefore the one having the largest underlying microscopic degeneracy given those

constraints. So, if one were to randomly pick a microscopic state given those constraints, the most likely

macroscopic state would be the maximum entropy distribution. In other terms, the MaxEnt distribution is

the least biased distribution compatible with the constraints, as any other distribution satisfying the same

constraints would correspond to a smaller underlying degeneracy, thereby neglecting some feasible (i.e.

constraint-satisfying) microscopic configurations. In this respect, a MaxEnt distribution requires the least
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Economics analogy 11.E Maximum Entropy economic equilibrium

Most of economic theory relies on the assumption that markets are capable of allocating resources optimally,

i.e. so that the utilities of each of the participating agents is maximized (an assumption can can be seen as the

analog of each cell in a populationmaximizing its growth rate). In order to achieve optimal states (called ‘equilibria’

in economics), agents endowed with a priori different preferences, resources and goals identify the actions that

maximize their utilities (e.g. transactions, trade, or production) and carry them out. This process however can

become more and more demanding as the number of agents that take part in the market gets larger and larger,

because (in short) the set of viable transactions for each agent can become exceedingly large. How can one

describe the equilibria that arise from these situations?

A possible approach, used at least since [356], is based on theMaximumEntropy principle. The idea, in short, is the

following. Once every agent has somehow chosen their preferred actions (i.e. once a system-wide ‘configuration

of individual actions’ has been selected), themarket as a whole presents a set of transactions to be carried out that

aggregate the choices of individual agents. When looked at the aggregate level, though, each set of transactions

can correspond to more than one configuration of individual actions. (This can happen, for instance, because

agents have a degree overlap in their characteristics which makes them indistinguishable from an economic per-

spective.) If one assumes that agents choose their actions at random from their set of viable transactions, then

some sets of transactions are bound to be more likely than others, simply because they can be realized in more

‘microscopic’ ways (for instance, by interchanging agents of the same type). It is then reasonable to think that the

likelihood of any particular set of transactions will be larger, the larger the number of microscopic ways in which

it can be realized. Taking entropy as a measure of multiplicity, the most likely set of transactions, then, is the one

that maximizes the entropy.

A model of market where the above program is worked out in detail is found in [356]. The ‘statistical equilibrium’

theory that follows from the use of the Maximum Entropy principle generalizes the standard competitive equilib-

rium discussed in microeconomics by providing a description of optimality in large markets with heterogeneous

participants. This line of work has also inspired further developments that explicitly included agents’ heterogene-

ity into the theory of competitive equilibria [357, 358, 359]. To the best of our knowledge, a similar approach has

not yet been used to model heterogeneous microbial systems.

information besides prior knowledge (i.e. constraints). (A more detailed justification for using the MaxEnt

principle as an inference tool is given e.g. in [355].) If for instance cells are assigned to states in a completely

random way, the MaxEnt distribution is the solution of

max
p

−
K∑

i=1

p(i) ln p(i) subject to

K∑
i=1

p(i) = 1 , (11.22)

which can be found via the method of Lagrange multipliers (Problem 11.5). If other constraints are im-

posed, though, the MaxEnt distribution will clearly change (Problem 11.6). For our purposes, the contin-

uous case with entropy given by (11.19) can be seen as a straightforward generalization of the discrete

one.

To get some grasp of the scenario that theMaxEnt rule provideswithin CBMs, let uswork out one especially

noteworthy case, namely the MaxEnt probability density of flux configurations with a given mean value of

a generic function f of the fluxes. This probability density is the solution of

max
p(v)

−
∫
P

p(v) ln p(v)dv subject to

∫
P

p(v)dv = 1 and

∫
P

f(v)p(v)dv = f . (11.23)

To find it, we construct the functional

L[p] = H[p] + α

[∫
P

p(v)dv − 1
]

+ β

[∫
P

f(v)p(v)dv − f

]
, (11.24)

where α and β are Lagrange multipliers for the normalization and the mean-value-of-f constraints, re-



184 Diversity of metabolic fluxes in a cell population

p(λ) p(λ)

xp

xp

λ

λ

λ

λsingle-cell growth rate λsingle-cell growth rate

with β s.t.

MaxEnt

=λ

Figure 11.4: MaxEnt modeling of single-cell growth rate distributions – Empirical distributions are repro-
duced by a MaxEnt assumption where the mean growth rate is constrained, leading to a Boltzmann dis-
tribution over the flux polytope (Eq. (11.30)).

spectively. Variation of L with respect to p yields the maximum condition

−1 − ln p(v) + α+ βf(v) = 0 . (11.25)

Solving for p results in

p(v) = eβf(v)

e1−α
. (11.26)

The normalization condition however determines the value of α, as one must have∫
P

eβf(v)dv = e1−α ≡ Z(β) . (11.27)

One is then left with

p(v) = 1
Z(β) e

βf(v) (v ∈ P) . (11.28)

The value of β must be determined from the constraint on the mean value, namely from

1
Z(β)

∫
P

f(v)eβf(v)dv = f . (11.29)

Notice that the result is nothing but Boltzmann’s distribution (11.10). We have therefore found that (11.10)

is the MaxEnt distribution for a given mean value of the function f . This means that if we have a dataset

returning the empirical mean value of an observable f over a population of cells, our knowledge is best

represented by assuming that p(v) is of the form (11.10), with β ensuring the matching of empirical and

theoretical means.

This suggests a possible way to represent single-cell growth-rate distributions [360], such as the E. coli

populations growing in rich media studied e.g. in [313, 314] (see Figure 11.4).

Let us assume that all cells in the population can be described by the same flux polytope P and let λ(v)
denote the growth rate associated to flux configuration v. We can ask the following question: what is the

p(v) on P that best represents our knowledge that the mean growth rate of cells is λ (empirical)? The

answer is

p(v) = 1
Z(β) e

βλ(v) (v ∈ P) , (11.30)

where Z(β) =
∫
P
eβλ(v)dv, and where β is set so that the empirical mean growth rate (λ) matches the

theoretical mean, i.e.

1
Z(β)

∫
P

λ(v)eβλ(v) dv = λ . (11.31)

We can therefore solve the above equation (numerically) and analyze the resulting distribution. One sees

from (11.30) that β has a ‘natural’ unit given by λ−1
max, the inverse maximum growth rate achievable in P

(which is easily computed by LP). In the populations analyzed in [360], the value of β that ensures the
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matching condition ranges from 190/λmax to 300/λmax, suggesting that indeed the degree of optimization

of λ is significant. The most remarkable result, however is that the marginal distribution of the growth

rate computed from (11.30), namely

p(λ) =
∫
P

δ(λ− λ(v))p(v)dv , (11.32)

matches the overall empirical growth-rate distributions. In other words, if one adjusts the parameter of

(11.30) so that the theoretical mean growth rate and the experimental one coincide, then (11.32) repro-

duces the entire empirical growth-rate distribution. This observation confirms the empirical evidence that

the variance of single-cell growth-rate distributions is a function of the mean, such that, if growth rates

are re-scaled by the mean, distributions roughly collapse on ‘universal curves’ [313, 314]. In addition, the

analysis of [361] has shown that predictions for individual fluxes obtained from (11.30) (i.e. mean values

plus standard deviations) provide a better fit to experimentally measured fluxes than growth-rate maxi-

mizing fluxes obtained from FBA. This is especially important as it suggests that, despite the relatively high

degree of optimization, the cell-to-cell variability underlied by (11.30) is biologically relevant.

In the following section we will use this observation as a springboard for the analysis of optimal heteroge-

neous populations.

11.5 Representing optimal populations

Let us start from a rather abstract question. Suppose that an organism is actually maximizing a certain

function F , unknown to us, which depends on metabolic fluxes v as well as on a set of other variables

w that are not part of metabolism: F ≡ F (v,w). We shall denote by (v?,w?) the (supposedly unique)

configuration of variables where F attains its maximum. Let’s furthermore say that we have a guess for

what the organism’s objective function might be, and that this guess is only a function of metabolic fluxes,

which we denote by f ≡ f(v). If we trust our guess, and if f is maximized by the (supposedly unique)

flux vector v̂, our prediction for the fluxes would be v̂. Question: what is the probability that v̂ is the true

optimum, i.e. that v̂ = v?? Note that f(v?) ≡ f? < f̂ ≡ f(v̂) (i.e. at the ‘true’ optimum the value of f is

bound to be smaller than the maximum value of f ).

The answer goes like this: according to the MaxEnt principle, the probability density p(v) for any flux con-
figuration v to be the true state of the system (i.e. the true optimum) should be undetermined other than

by our knowledge that the real optimum has some value of f below f̂ . What is the correct constraint to

enforce (besides normalization) if we are to look for such a p(v)? We could impose that allowed configu-

rations strictly have some fixed value of f < f̂ . This choice would lead to a uniform density over all states

with a given value of f . In this way, though, we are imposing that states with a different value of f are

strictly inaccessible, which is not part of our knowledge. However, if we impose that only the mean value

of f is constrained, MaxEnt will return a probability density with the exact samemean value as the uniform

density just described (by construction) but a much larger entropy, just because –intuitively– it will assign

a non-zero probability to all states. Hence, as long as we have no other information, the best prediction

we can make for p(v) is given by the probability density that maximizes the entropy H[p] subject to the

constraint 〈f〉 ≡
∫
P
p(v)f(v)dv = f?, i.e. by the solution of

max
p

−
∫
P

p(v) ln p(v)dv subject to

∫
P

p(v)dv = 1 and

∫
P

p(v)f(v)dv = f? . (11.33)

We now know the result to be given by (11.10), i.e.

p(v) = 1
Z(β) e

βf(v) (v ∈ P) , (11.34)

where β is the Lagrange multiplier enforcing the constraint 〈f〉 = f?. What this means in practice is this:

if one is modeling a microbe’s metabolism and is unsure about the objective function but has a guess (f ),
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Figure 11.5: Fitness-information bound (general form) – The orange line encodes the maximum mean
growth rate achievable for any given value of the information content I (Eq. (11.35)) of a metabolic flux
distribution (or the minimum value of I required to achieve any given mean growth rate).

information theory suggests that the best one can do is to assume that metabolic flux configurations are

selected according to (11.34). Ideally, the value of β for which one obtains the best agreement between

predictions based on sampling (11.34) and experiments is the ‘degree’ to which the system optimizes f . If

f is the true objective function, then the agreement between theory and experiments will get better and

better as β increases. It is important to keep in mind that (i) while we have assumed that the organism

is actually maximizing something, we didn’t really use the fact that F is maximized at (v?,w?) (only that

the true state of the system has some value of f below f̂ ); (ii) this is a totally ideal situation (for instance,

experimental data have errors, so whether comparisons between theory and experiments are informative

doesn’t only depend on the theory but also on the quality of the data).

The fact that (11.34) is ‘optimal’ in a rather fundamental sense (a priori different from the sense in which

f -maximizing populations are optimal) encourages to view distributions described by (11.30) through a

different lens. When we maximize the entropy at fixed mean growth rate, in practice, we are looking for

the ‘broadest’ probability density (i.e. the most variable population) onP that is compatible with the given

mean. In other terms, we are saying that, given a mean growth rate, the optimal population is the one

that has the largest possible variability. To quantify variability in a more readily understandable way, it is

convenient to transform it into a measure of the amount of information encoded in p. One can reason

as follows: if no prior information is available about the population, uncertainty is maximal and all flux

vectors inPmust be considered to be equally likely. Thismeans that, for such a population, the probability

density over P is uniform (see (11.7)). We shall denote the entropy of the uniform distribution over P by

H(0). When we inject information into the problem (e.g. the fact that the population has a certain mean

growth rate), then the probability density is no longer uniform but given, say, by (11.30). The uncertainty is

therefore reduced byH(0) −H(β), whereH(β) is the entropy of (11.30). (Clearly,H(0) is just the entropy
of (11.30) for β = 0.) The quantity

I = H(0) −H(β)
ln 2 (11.35)

denotes the amount of information (in bits, hence the factor ln 2) injected by a non-zero value of β. Re-

formulating our population-level optimization, we can say that, for any fixed mean growth rate 〈λ〉, the
optimal population is the one carrying the smallest value of I. A short calculation (Problem 11.7) shows

that 〈λ〉 and I are related by

β〈λ〉 = I ln 2 +
∫ β

0
〈λ〉dβ′ , (11.36)

where it should be noted that 〈λ〉 is an increasing function of β (as β increases, the density gets more and

more concentrated around the growth-rate maximizing flux vector, thereby leading to an increase of 〈λ〉).

The curve 〈λ〉 versus I described by (11.36) can therefore be computed numerically for any metabolic

network reconstruction (as the only ingredients required are encoded in the flux polytope P) [360]. The

resulting line (see Figure 11.5) separates the (〈λ〉, I)plane in a viable (achievable) region and a forbidden re-
gion where themean growth rates are too large for the amount of information encoded in the population.
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This ‘phase diagram’ yields, first and foremost, a general prediction linking the mean growth rate (fitness)

of a microbial population to its metabolic heterogeneity: all populations must have fitness-heterogeneity

values in the viable region. Recent work relying on an advanced statistical inference framework has shown

that actual microbial populations indeed lie in the viable part of the plane [362]. In addition, it provides

a quantitative definition of an optimal population that accounts for variability: optimal populations have

fitness-heterogeneity pairs that lie on the boundary between the viable and the forbidden region. In this

respect, results from [360, 361, 362] can be summarized by saying that heterogeneous, faster-growing E.

coli populations (mean growth rate larger than roughly 1/h, richer growthmedia) are very close to optimal-

ity, while slower-growing ones tend to have mean growth rates and information contents that get more

and more sub-optimal the less rich is the growth medium. (Of course, this notion of optimality refers to

the growth rate and information content as the key parameters to evaluate a population’s performance.

It may well be, and this is an issue definitely worth exploring, that slower-growing population are optimal

with respect to some other parameter(s).) At any rate, the above definition of optimality coincides with

the standard one (growth-rate maximization) for β → +∞, in which case variability goes strictly speaking

to zero as all cells collapse on the same flux configuration. And we now understand how it generalizes it:

by stressing the way in which heterogeneous populations can be optimal despite growing at sub-maximal

rates.

For later convenience, note that, because the entropy is a convex functional, the solution to the MaxEnt

problem is the same as the solution to

max
p

∫
P

p(v)λ(v)dv subject to

∫
P

p(v)dv = 1 and −
∫
P

p(v) ln p(v)dv = H? . (11.37)

The above problem has perhaps a more direct interpretation: the optimal population is the one that has

the largest mean growth rate at fixed variability (entropy) or, equivalently, at fixed information content.

Before moving on, we notice that, in the above setting, optimality of heterogeneous populations has a

rather simple mechanistic interpretation in terms of how populations ‘occupy’ the flux polytope. If one

considers the uniform distribution onP, Eq. (11.7), and calculates the marginal distribution for the growth

rate (i.e. (11.32)), one finds that the growth-rate landscape in which populations grow is extremely skewed

towards slow growth rates: the overwhelming majority of metabolic flux configurations corresponds to

slow-growing cells, i.e. with growth rates roughly two orders of magnitude below λmax. This implies that,

whatever flux vector we are in, a small random change to it is overwhelmingly more likely to decrease

our growth rate than increase it. In this respect, slow states have an ‘entropic’ advantage over fast states.

On the other hand, by definition, fast-growing flux configurations replicate faster than slow-growing ones,

and therefore have a replicative advantage. It is therefore tempting to interpret the probability density

(11.30) as resulting from the balance between these two tendencies. One can for instance imagine that

a microbial population grows and evolves in time in P due to (i) replication events, and (ii) small random

changes of the flux vector (due e.g. to gene expression noise). Ref. [360] has indeed shown that such a

population evolves toward a distribution very close to (11.30), where the role of β is played by the inverse

rate of diffusion of the population in P, that is, by the inverse of the rate at which small random changes

occur: fast rate implies small β, and vice versa. (As the mathematical analysis of this scenario requires the

toolbox of non-linear Fokker-Planck equations, it is beyond the scopes of this Chapter.)

The above theory can be extended in various directions. We shall limit ourselves to one example here,

namely that of optimal populations in fluctuating environments [363]. The basic assumption we make

is that the growth rate λ is a function of both the flux vector v and of a single (for simplicity) exogenous

variable s ≥ 0 representing the stress level to which the population is subject: λ ≡ λ(v, s). We furthermore

assume that s is a random variable with probability density P (s). For any value of s, λwill bemaximized by

a certain flux vector v? ≡ v?(s). If fluctuations of s are sufficiently slow, then cells may be able to perfectly

adapt their metabolic response to every value of s they encounter. But this is unlikely to be possible in

rapidly fluctuating environments. In the latter case, it is instead reasonable to assume that cells will try to

maximize their average growth rate, where the average is taken over the distribution of s. The relevant
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quantity is now the probability density to observe a certain flux configuration v given that the state of the

environment is s (p(v|s)), while the objective function (to be maximized over p(v|s)) is just

〈λ〉 =
∫
dsP (s)

∫
P

p(v|s)λ(v, s)dv . (11.38)

We should now specify the constraints. One is simple and concerns normalization:
∫
P
p(v|s)dv should

be equal to one for all s. To introduce the second one, we note that, because one expects v to encode

information about the environment, it is convenient to constrain the mutual information of v and s, i.e.

I(v; s) =
∫
dsP (s)

∫
P

p(v|s) log2
p(v, s)
p(v)P (s)dv , (11.39)

where p(v, s) = P (s)p(v|s) is the joint distribution of v and s, whereas p(v) =
∫
dsP (s)p(v|s). Clearly, I = 0

if p(v, s) factorizes over v and s and it gets larger and larger as v and s becomemore andmore correlated.

Putting these pieces together, we can write the cell’s optimization problem as

max
p(v|s)

∫
dsP (s)

∫
P

p(v|s)λ(v, s)dv subject to

∫
P

p(v|s)dv = 1 (∀s)

and

∫
dsP (s)

∫
P

p(v|s) log2
p(v|s)
p(v) dv = I? . (11.40)

A comparison with (11.37) should clarify how the above generalizes the previously discussed optimization

framework. Again using the method of Lagrange multipliers one finds that the optimal probability density

is now given by (Problem 11.8)

p(v|s) = p(v)
Z(s, β) e

βλ(v,s) , (11.41)

where

Z(s, β) =
∫
P

dv p(v) eβλ(v,s) , (11.42)

while β is a Lagrange multiplier.

The meaning of (11.41) is straightforward: when β → 0, the metabolic flux configuration v becomes inde-

pendent of s, implying I = 0. As β increases, v and s get more and more correlated, while p?(v|s) tends
to get more and more sharply peaked around v?(s). In the limit β → +∞ cells respond to each value

of s by selecting the exact flux configuration that maximizes λ. To achieve this, maximal I is required.

A detailed study of the optimal probability density emerging in this case within a highly coarse-grained

model of metabolism has been carried out in [363], showing how complex metabolic strategies (including

the coexistence of slow-growing, persistent states with fast-growing ones) arise as optimal responses to a

fluctuating environment.

11.6 Concluding remarks

Metabolic variability in cell populations has, aswe have discussed, multiple origins, both rooted in unavoid-

able stochastic effects and (possibly) in the fact that, in certain cases, being heterogeneous can be optimal

for a microbial population. Models can account for variability by representing (sufficiently large) popula-

tions via probability densities defined on the flux polytope. Two main (different) goals can be achieved.

First, one can look for the probability density that yields the best (in a precise sense) description of a set of

empirical data. Methods like Maximum Likelihood andMaximum Entropy provide different, albeit related,

approaches to this task. Second, one can formulate optimization problems for populations, whose gen-

eral solution is a probability density rather than a single flux configuration. Solutions to these problems

can highlight how fitness and variability are related in optimal populations, providing useful theoretical

benchmarks for real microbial systems. While possibly more demanding from a mathematical viewpoint
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(and certainly more demanding from a computational viewpoint), these approaches expand the scope of

CBMs, including in terms of predictive power. In addition, they can refine the notion of optimality and

provide insights into the fundamental principles that govern the organization of metabolism across popu-

lations. The question of whether variability confers an advantage tomicrobial populations is however very

general, and goes beyond the metabolic level of CBMs on which we focused here. A broader discussion

of these aspects is presented in the Chapter Cell behavior in the face of uncertainty.
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Problems

Problem 11.1 Multiple optima in the model from Fig. 11.2

Use the model in Fig. 11.2 to study different objective functions, specifically combinations of fluxes. Can

you find other cases in which the optimum is not unique?

Problem 11.2 Relationship between Direac’s δ and Heaviside’s θ

Show that, for a real variable x, a continuous function f and upon integration over R, d
dx
θ(x) = δ(x).

Hint: Use the fact that d
dx

[θ(x)f(x)] = θ′(x)f(x) + θ(x)f ′(x).

Problem 11.3 Well-defined versus ill-defined flux spaces

Using the sampling methods introduced in the Chapter The space of metabolic flux distributions and a

linear objective function of your choice, write a program that will sample a toy two-dimensional flux

polytope according to (11.10), and check the outcome for a few values of β. Then try changing the shape

of the polytope in different ways by changing the constraints. What features of the polytope can make

sampling harder and/or less accurate (i.e. require a larger number of samples)? Can you work out a

modification of the sampling algorithms that alleviates these problems?

Problem 11.4 MAP inference versus Bayesian inference

Consider a Bernoulli random variable with parameter ψ, i.e. such that the probability of having k suc-

cesses in n trials given ψ is

p(k|ψ) =
(
n

k

)
ψk(1 − ψ)n−k , (11.43)

and assume that the prior for ψ is a β-distribution with parameters a and b, i.e.

p(ψ) = Γ(a+ b)
Γ(a)Γ(b) ψ

a−1(1 − ψ)b−1 . (11.44)

Calculate the full posterior p(ψ|k) and theMAP estimator forψ as a function of k, n, a and b. Then assume

a = b = 2 and compare the following situations: (i) a Bernoulli process that returned 2 successes in 3

trials; (ii) a Bernoulli process that returned 20 successes in 33 trials. Show that the MAP estimator for

ψ is 60% for both (i) and (ii) (so the two processes are indistinguishable to MAP), while the posterior is

different. Knowing the posterior, which process would you pick if you were asked to point to the one

that is more likely to have ψ = 0.6?
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Problem 11.5 Uniform distribution as the solution of (11.22)

Show that the solution of the maximization problem (11.22) is the uniform distribution p(i) = 1/K for

all i.

Problem 11.6 MaxEnt distribution in different cases

Assume that a certain real variable x takes values x(i) in theK states (one can for instance think of x(i)
as the growth rate of cells in state i). Show that the MaxEnt distributions for constraints imposed on (i)

normalization of the distribution, (ii) normalization and mean value of x, (iii) normalization, mean value

of x and second moment of x, and (iv) normalization and mean of the logarithm of x, are, respectively,

uniform, exponential, Gaussian, and power-law.

Problem 11.7 Fitness-information relationship

Retrieve formula (11.36).

Problem 11.8 Optimal flux distribution in fluctuating stress conditions

Retrieve formula (11.41) (hard).



Chapter 12

Cells in the face of uncertainty

David Lacoste, Olivier Rivoire, and David Tourigny

Chapter overview

◦ Organisms that growand survive in uncertain environmentsmay need to change their physiological

state as the environment changes.

◦ When the environment is uncertain, one strategy known as bet-hedging is to make these changes

randomly and independently of the environment, to ensure that at least part of the population is

well adapted.

◦ Organisms that collect information from their environment may also use this information to mod-

ulate their changes of physiological states.

◦ We review these different strategies and point out parallels with the theory of optimal financial

investments.

12.1 Introduction

To a large extent, the content of this textbook prior to the current chapter has dealt with models of mi-

croorganisms under the implicit assumption that the dynamics of both environmental factors and intracel-

lular components are deterministic, and that behavior is optimized uniformly across cells in a population.

On longer time scales however, natural selection also acts on populations and these populations may en-

counter environments that fluctuate across both time and space. Under these conditions, natural selection

may not favor a homogeneous deterministic cellular response across the population, but rather select for

a certain level of population diversity and heterogeneity, including behaviors arising from mechanisms

that are fundamentally stochastic. Stochasticity is inherent to intracellular processes such as gene expres-

sion and signal transduction due to the small number of molecules that they involve. It is often referred

to as “noise”, but this terminology can be misleading because may also fulfill an essential role in cellular

function and survival, for example during growth in uncertain environmental conditions. The purpose of

this chapter is to highlight this role, introduce the mathematical models necessary for understanding it,

and draw a new economic analogy with problems of investment in finance.

Before expanding upon the role that uncertainty plays in shaping cellular behavior, we briefly point out

some general limitations of deterministic models based on optimal regulation of behavior in time as de-

scribed in Chapter 10. In that chapter, it was assumed that microorganisms have evolved, under selective

pressures exerted by the environment, to optimize a specific objective criterion or combination of objective

criteria that were shared by all cells of a population. This assumption was then incorporated into an op-

timal control framework to explain how cellular behavior (e.g., enzyme expression) is optimally regulated

191
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in time depending on deterministic interactions between a microbial population and its environment. In

particular, we consider optimal control strategies across a prescribed time window. Defining in such case

assumes the organism has perfect information on how the environment will change (including in response

to actions taken) over time. In an uncertain environment, this information is simply not available. An alter-

native is instantaneous optimization of growth rate at each time point but this is a shortsighted strategy

that excludes any partial information on future environmental states that the organismmay have acquired

over the course of evolution. Such deterministic modelsmay be suitable for deterministically changing en-

vironments, but cannot account for stochastic behaviors that may be advantageous to population growth

in uncertain environments.

In this chapter, it will be shown how principles of optimality can be formulated to study the behavior of

organisms growing under uncertainty. Unlike the deterministic setting however, optimality will instead

need to be defined in terms of probabilities and expected returns. Analogous to the general unification

of deterministic models for cellular behavior using an optimal control theory framework, models includ-

ing uncertainty are unified by the subject of stochastic optimal control. Beyond biology, this subject has

wide-reaching applications to engineering but the most relevant analogy is with finance where stochastic

strategies of portfolios diversification mirror stochastic strategies of cellular diversification. This will add

a new economic analogy to the economic analogies of previous chapters.

12.2 Strategies to cope with uncertainty: a financial analogy

We will use the topic of as a recurring example throughout this chapter (Figure 12.1). When a clonal pop-

ulation of bacteria is exposed to an antibiotic, not all cells within the population are killed – a small sub-

population, although genetically identical to the rest, may nevertheless be in a distinct phenotypic state

that is growth-dormant and resistant to treatment (Figure 12.1A). While the peers of this dormant sub-

population previously grew well in the absence of antibiotic, upon exposure to treatment these growing

cells are killed, and only the dormant cells (the persisters) remain alive. In turn, when the remaining persis-

ters are transferred to an environment without antibiotic a large fraction is able to revert to the growing

state, allowing the population as a whole to survive. Remarkably, in this subsequent phase of growth

roughly the same small fraction of persisters is retained as before the treatment. Deterministic mod-

els based on short-term optimal growth cannot explain how part of a population adopts a slow-growing

state: they would predict that each cell should adopt the growing phenotype in absence of antibiotics.

Cells could have a mechanism to detect the presence of unfavorable environmental conditions and adopt

the persister phenotype as a response, but there are several experimental observations not explained by

such amechanism [364]: (1) a fraction of persisters exists prior to antibiotic treatment; and (2) not all cells,

although genetically identical, adopt the persister phenotype. We will see that a more parsimonious de-

scription of persistence involves an optimization of long-term rather than short-term growth, which differs

when environmental conditions fluctuate.

Bacterial persistence is an example of , which more generally refers to the benefit of spreading resources

acrossmultiple behavioral phenotypes to reduce the associatedwith investing all resources into any single

phenotype. Returning to the example of bacterial persistence, a natural question one may ask is: what

determines the precise fraction of persister cells (risk-avoiding, potentially low-reward phenotype) com-

pared to growing cells (risky, potentially high-reward phenotype) within a given population? This question

echoes a central question in financial investment: how should investors diversify their portfolio to max-

imize their capital in the context of uncertain returns? We will see that some of the same mathematical

arguments of optimality under uncertainty can be used to analyze these two problems, showing how the

optimal fraction of persisters is expected to depend critically on the probability to experience different

environmental states. The terms of the analogy are presented in Table 12.1.

A pure bet-hedging strategy assumes the absence of any direct information on the current environmental

state. Biologically, cells may sense signals or cues that encode varying degrees of information on their

current environment. For instance, in some populations, a larger proportion of persisters is found in
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Figure 12.1: Bacterial persistence as an example of a cellular strategy to cope with uncertainty in environ-
mental conditions – A) Cells in a genetically identical population can display one of two distinct phenotypes
that are associated with growth (pink cells) or dormancy (blue cells) in the absence of antibiotics. Only the
dormant cells survive (persist) when exposed to antibiotics, and can transition back to the growth pheno-
type so that the population as a whole resumes growth in the absence of antibiotic. B) In this simplified
model of bacterial persistence, the strategy u over two responses (phenotypes) Rgrowth, Rdormant depends
on environmental statesElow andEhigh, corresponding to low and high levels of the antibiotic, respectively.
The occurrence of the states Elow and Ehigh is governed by probabilities p(Elow) and p(Ehigh), respectively.
C) The multiplicative rates f(R|E) associated with phenotypesRgrowth, Rdormant depend on environmental
conditions, so that f(R|E) can be represented in matrix form. The resulting optimal strategy ud corre-
sponding to the fraction of dormant cells in the population in turn depends on the probabilities of the
environmental state E. An analogy with Kelly betting is illustrated on the right-hand side, where the prob-
abilities of a horse winning a race, the odds provided by a bookmaker and the optimal betting strategy are
identified with p(E), f(R|E) and u(R|E), respectively, as displayed in Table 12.1.

nutrient-poor environments compared to nutrient-rich, implying a direct relationship between shifts in

environment and switches between phenotypes. These sensing or signaling mechanisms can come with

associated costs however, imparted by the investment of cellular resources in, for example, the gene ex-

pression machinery. Thus, optimal cellular behavior in the face of uncertainty may be expected to involve

a trade-off between stochastic (e.g., bet-hedging) and deterministic (e.g., signaling) mechanisms that bal-

ance benefit to cost in a manner that depends on evolutionary context. Other trade-offs may also exist

regarding reward versus risk associated with a particular cellular strategy. Analogously, financial investors

face trade-offs when using incomplete information on the current state of the market and developing an

investment strategy based on the level of risk they are willing to incur.

12.3 Modeling cells growing in uncertain environments

We begin with a simple model of persistence before introducing a more general framework. This simple

model assumes that bacterial cells experience an alternation of low and high antibiotics environments and

can adopt two physiological states, growing or dormant (Fig. 12.1). The dormant cells are unable to repli-

cate but persist in either high- or low-antibiotics environments while growing cells always divide when an-

tibiotics are low in concentration but die when they are high. Mathematically, this is described by f(R,E),
the number of descendants of a cell with phenotype R in environment E: f(R = dormant, E = low) =
f(R = dormant, E = high) = 1, while f(R = growing, E = low) = 2 and f(R = growth, E = high) = 0.
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Biology Gambling Finance

Individual Capital unit Currency unit
Environment p(E) Race results p(x) Market state
– Gambler Investor
Phenotype decisions u(R) Bets b(x) Investment strategy
Multiplicative rate f(R,E) Odds o(x) Immediate return
Environmental cue P (S|E) Side information P (y|x) Side information
Population growth rate Λ Long-term returnW Long-term return
Extinction probability Probability of bankruptcy Probability of bankruptcy
Growth rate variance σ2 Growth rate variance σ2

W Volatility
Population size Nt Capital Ct Capital

Table 12.1: Analogy between bet-hedging in biological populations and diversification strategies in Kelly’s
gambling and finance. The common problem in each case is an uncertain environment that makes it
impossible to anticipate which phenotype or investment is optimal for future growth. In finance, the “pop-
ulation” is constituted by the capital which is distributed across different options (different horses of a race
or different stocks of a stock market). The main limitation of the analogy is that information is not pro-
cessed centrally in biological populations but at the level of each individual, with therefore no equivalent
to a gambler or investor. The notations are introduced in the main text for the biological problem and in
Box 2 for the gambling problem.

In absence of sensing mechanism, we consider that the fraction of dormant cells, ud ≡ u(R = dormant),
is a fixed quantity that only possibly evolves on very long time scales. The population thus grows by a

global factor Ahigh = f(R = dormant, E = low)ud if the environment is high antibiotics and by a factor

Alow = f(R = dormant, E = low)ud + 2f(R = growing, E = low)(1 − ud) if it is low antibiotics. Finally, the

environment fluctuates randomly, with a probability pa to have high antibiotics and a probability 1 − pa to

have low antibiotics. Over a large number T of generations, a population therefore experiences in average

paT periods of high antibiotics and (1−pa)T periods of low antibiotics. As further explained below, the pop-

ulation size NT after T generation is hence expected to globally grow as Nt = (Ahigh)paT (Alow)(1−pa)TN0.

This corresponds to an exponential growth (or decay) of the form NT = eΛTN0 with a long-term growth

rate Λ given by Λ = pa lnud + (1 − pa) ln(ud + 2(1 − ud)).

Two bacterial populations which have different “strategies” ud will then have different growth rates Λ(ud).
The optimal strategy which maximizes Λ(ud) is therefore when the probability ud to adopt the dormant

state is

ud =

{
2pa, if 0 < pa ≤ 1/2.

1, if 1/2 < pa ≤ 1.

The interesting case is when pa < 1/2, otherwise antibiotics is so often high that the population cannot

grow. In this case, we find that a limited fraction of the population should be in the dormant state and

that this optimal fraction depends on the frequency pa at which high antibiotics occurs.

This example can be extended to an arbitrary number of environmental states E and phenotypic (re-

sponse) states R and to the presence of cues collected from the environment. In general, the states and

cuesmay take discrete (as in the above example) or continuous values. The “strategy” of a cell may then be

described by its probability u(R) to adopt a particular phenotypeR. This strategy depends on the environ-
ment if some signal S is perceived, in which case the strategy takes the form of a conditional probability

u(R|S) satisfying ∑
R

u(R|S) = 1, with u(R|S) ≥ 0

for each possible signal S. For the example of bacterial persistence, u(R = dormant|S) may be the fraction

of cells adopting a dormant phenotype within the population of cells with intracellular antibiotics concen-

tration S. The fraction of growing cells would then be given by u(R = growing|S) = 1 − u(R = dormant|S).
By comparison, Figure 12.1B illustrates amodel where u(R|E) depends directly on the environmental state

E. In finance, u(R|S) would correspond to the fraction of the capital that an investor allocates to asset R

when receiving incomplete information S on the current market state E. More generally, we may also
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consider that the probability to adopt a phenotype Rt at time t depends on the phenotype Rt−1 adopted

at time t−1 by the cell or its parent, whichwould be described by u(Rt|S,Rt−1) or u(Rt|St, Rt−1) to indicate
that the signal St is obtained at time t.

The model also needs to specify the temporal dynamics of the environment and the relation between S

and E. The simplest assumption is that successive environmental states are uncorrelated, and occur with

probability p(E) and that signals are derived from a conditional probability p(S|E), as illustrated in Figure

12.1B where p(S|E) = δ(S|E) is equivalent to S ≡ E. This is sufficient to demonstrate bet-hedging or

discuss the value of signaling and in the examples below we therefore make this simplifying assumption

by default. More generally, to address issues of inheritance where Rt depend on Rt−1, we may assume a

discrete-time Markov process where the state of the next environment depends only of the previous one,

with transition probabilities p(Et|Et−1) where Et denotes the state of the environment at time t = 1, 2 . . . .
Even more generally, we may also want to account for the feedback that the population exerts onto its

environment and consider that Et depends on the size and composition of the population.

Finally, we need to specify the dynamics of the population itself. Between time points t and t + 1, a cell

adopting phenotype R in the context of environment Et either dies or survives and may additionally pro-

duce offsprings. This is summarized by a quantity f(R,Et) ≥ 0 that indicates themean number of descen-

dants at time t+ 1 of an individual with phenotype R in environment Et (possibly including the individual

itself). Given that u(R|St) denotes the fraction of cells or probability of the organism adopting phenotype

R based on sensed state St, a population is therefore expected to globally increase (or decrease) in size

by a factor

At =
∑

R

f(R,Et)u(R|St) (12.1)

that depends both on the strategy u and the current environmental state Et. This factor At is a stochastic

variable as it depends on the stochastic variables Et and St. More explicitly, if Nt denotes the size of the

population at time t, this size will increase or decrease to Nt+1 = AtNt at time t + 1 (in average). We

can in this way account for the dynamics of population growth and then ask what is an “optimal” strategy

u(R|S) that leads to, for example, the largest population size over a given time interval. Compared to the

deterministic setting, however, this is not yet a well-formulated problem as the population size varies with

time and therefore generally depends on the particular sequence of environments E0, . . . , Et, which is in

turn stochastic. Thus, we need to extend the concept of optimality to the stochastic regime. We examine

this question in the next section.

12.4 Optimization in uncertain environments

In the previous section, we used notation At to denote the fractional increase or decrease in population

size given that strategy u(R|St) is adopted in environment Et. An alternate name for this quantity is the

instantaneous growth rate. It follows from recursion that, given an initial population size of N0 at time

t = 0, the population size at time t is given by

Nt = AtAt−1 · · ·A1N0 (12.2)

where At depends on the environmental state Et and is therefore a stochastic variable when the environ-

ment varies stochastically. Here the choice of an objective criterion is fundamentally linked to the time

scale at which growth is considered.

12.4.1 Long-term versus short-term optimization

At the shortest time scale, maximization of population growth over a single time step corresponds to

adopting the distribution u(R|St) that maximizes the arithmetic mean E[A], where A denotes the random

variable whose realization at time t isAt (Box 1). Thismaximum is typically achieved by a populationwhere

all individuals adopt the same optimal phenotype – the phenotype R maximizing E[f(R,Et)u(R|St)] =
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Math box 12.A Arithmetic versus geometric mean and logarithmic utility

Additive random processes are governed by the law of large numbers: the sum of many random variables scales

with their arithmeticmean. In finance andbiology, returns are compounded and growth is amultiplicative process.

This is fundamentally different: the typical outcome is no longer described by the arithmetic mean but by the

geometric mean [365]. A simple example illustrates this difference. Imagine a succession of environments in

which the population either doubles or is reduced by 2/3, with same probability. This corresponds formally to

a population size increasing as Nt = At . . . A1N0 where At = 2 (doubling) with probability 1/2 and At = 1/3
(2/3 dying rate) with probability 1/2. The arithmetic mean is 7/6 which is > 1 and suggests that the population

will grow. But as each outcome has the same probability, the typical growth over t generation is actually given

by 2t/2(1/3)t/2 = etΛ with Λ = (1/2) ln(2/3) which is < 0: the population will in fact most likely go extinct.

Mathematically, taking the log turns the product into a sum to which the central limit theorem applies. More

intuitively, the arithmetic mean is dominated by very rare events. Historically, the importance of the geometric

mean for estimating risk was first understood by Daniel Bernoulli in the context of games [366, 367]. Later, it has

been the subject of many debates in finance [366], reflecting the fact that alternative utility functions over which to

optimize may be more appropriate when considering a short temporal horizon or when accounting for different

degrees of risks.

∑
E,S

P (S|E)P (E)f(R,E)u(R|S). In the example of persistent cells, this strategy would correspond to

having all cells in a growing state if the most likely environment is an absence of antibiotics. This strategy

is extremely risky if these growing cells cannot survive an episode of antibiotics, which would therefore

lead to extinction of the population. Taking into account the rare but important events of high antibi-

otics concentration requires taking a long-term perspective. Remarkably, in the long-term the problem

becomes effectively deterministic due to the law of large numbers. The best known example of a law of

large number applies to the sum A1 + · · · + At of t random variables Ai, which almost certainly behaves

as tE[A] as t → ∞. Here, the problem involves a product of random variables and a similar but different

law of large number applies: the product A1 × · · · ×At does not typically behave as (E[A])t but instead as

exp(tE[lnA]) where E[lnA] is known as the (Box 1). This corresponds to the intuition that population size

typically grows exponentially in the long run, Nt ∼ eΛtN0, with a well-defined long-term growth rate

Λ = E[lnA] =
∑
E,S

p(S|E)p(E) ln

(∑
R

f(R,E)u(R|S)

)
, (12.3)

that is predictable despite the stochasticity of the environment.

Biologically, therefore, maximizing the geometric mean is equivalent to maximizing the long-term growth

rate of the population. This is the relevant measure of fitness in the long-term from an evolutionary point

of view, because of two populations with growth ratesΛ1 andΛ2, the onewithΛ1 > Λ2 will almost certainly

exponentially outnumber the other.

The simple example of persistence that we introduced previously illustrates well howmaximizing the long-

term is different from optimizing the instantaneous growth rate. The arithmetic mean E[A] is indeed

maximized by ud = 0 when pa < 1/2, which leads to certain extinction unless pa = 0. This remains true

for general models including multiple environmental states and sensing that conveys information about

the environment through conditional probability p(S|E). Using the long-term growth rate Λ as a measure

of fitness, it is then possible to quantify the value of information S by comparing the optimal growth rate

that can be achieved in presence of S to that in its absence. Remarkably, for special limits of the model,

corresponding to Kelly’s horse-race model (Box 2), this value is given by some of the same quantities that

appear in Shannon’s theory of communication (Box 3).
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Math box 12.B Kelly’s model

In 1956, [368] extended the work of on communication to the field of . This classic model has important implica-

tions for investment strategies in and beyond. In the context of biology, Kelly’s paper led to a clarification of the

notion of value of information which is described in Box 3.

Let us recall the basic elements of Kelly’s horse race. The odds paid by the bookmaker when the horse x wins is

o(x), and the probability for this to happen is p(x). A gambler can distribute his/her bets on the different horses,

and b(x) is the fraction of the bet set on horse x. Thus, a strategy of the gambler is defined by a vector of bets b of

M components b(x). At every race, the gambler invests his/her entire capital on all horses, so that
∑M

x=1 b(x) = 1,
always betting a non-zero amount on all horses. Since no bet is zero, there is a well-defined vector of the inverse

of the odds paid by the bookmaker denoted r. When the odds are fair, the bookmaker does not keep any of the

invested capital and as a result
∑M

x=1 r(x) = 1.
At each time t, one horse, which we call x, wins with probability p(x). As a result, the capital at time t+1 is updated

according to Ct+1 =
bx

rx
Ct. As explained previously, this multiplicative process is best studied by considering

instead the log of the capital, log-cap(t) ≡ log Ct, which satisfies the assumptions of the law of large numbers

when races are independent. In these conditions, log-cap(t) ≡ log Ct converges on long times towards the growth

rate W (b, p) where
W (b, p) =

∑
x

p(x) log o(x)b(x). (12.4)

This growth rate can be rewritten using an information theoretic measure between two probability distributions,

p and q, called the Kullback-Leibler divergence and defined by

DKL(p, q) =
∑

x

p(x) log
p(x)
q(x)

. (12.5)

One can show that this quantity is a non-negative measure between the two probability distributions. With this

notation, the growth rate can be rewritten as

W (b, p) = DKL (p‖r) − DKL (p‖b) , (12.6)

It follows from this equation that the strategy b∗ = p is optimal. This strategy, known as Kelly’s strategy or

proportional betting, overtakes any other strategy in the long-term as illustrated in Fig. 12.2.

This formulation shows that the growth rate is the difference between the distance of the bookie’s estimate from

the true distribution and the distance of the gambler’s estimate from the true distribution. Hence, the gambler

makes money if they have a better knowledge of the winning probabilities than the bookie. The optimal long term

growth rate is the positive quantity :

W ∗(b, p) = DKL (b‖r) . (12.7)

Kelly’s horse race model is formally a particular case of the model introduced in the main text when considering

that one, and only one phenotype R = R(E) can grow in any given environment E, such that f(R, E) = f(E) if
R = R(E) and 0 otherwise. Horses x may then be interpreted as both the environments E and their associated

phenotypes R(E) so that u(R) = b(x) and f(E) = o(x). In biology, but also in finance where R is interpreted

as an asset, there is generally no one-to-one correspondence between environments E and phenotypes R and

multiple phenotypes (assets) may grow (have non-zero return) in any given environment. The optimal strategy is

then no longer necessarily proportional betting as illustrated in the example of persistence presented in the main

text and as also shown in Ref. [369].

12.4.2 Trade-offs at intermediate time scales

So far we considered two extreme limits of immediate and infinite time scales under one important as-

sumption: the population is always large enough to escape extinction. Eq. (12.2) is indeed valid only for

largeNt and does not apply anymore whenNt ∼ 1, in which case the population size is subject to stochas-
tic effects, called demographic noise in population biology. In our analogy with finance, the eventuality of

Nt = 0 with no possible recovery corresponds to a risk of bankruptcy.

When considering long time scales, a population with Λ > 0 will either become extinct or grow exponen-

tially. In this later case, demographic noise is eventually negligible and our approach valid. At intermediate
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Figure 12.2: Kelly’s optimal strategies – Evolution of the log-capital (left plot) or of the capital itself (right
plot) as a function of the number of races for Kelly’s optimal strategies (red curve) and for a non-optimal
strategy (yellow curve). On left plot, the straight lines have the slope of the corresponding growth rate
for each strategy. Note that the fluctuations in Kelly’s strategy can in fact be quite large, when plotted in
normal scale instead of log-scale.

time scales, however, population sizes Nt may deviate substantially from N0e
Λt predicted by exponential

growth, andmay become extinct (Nt = 0) as a result. To quantify these deviations, note that for themodel

defined in the main text where there are no correlations of the instantaneous growth rate At, the central

limit theorem imposes that the quantity

∆t = 1
σ

√
t

(
log Nt

N0
− tΛ

)
, (12.8)

converges on long times towards aGaussian distribution of unit variance, where σ is the standard deviation

of the instantaneous growth rate. It follows from this property that

σ2 = 1
t

Var
(

log Nt

N0

)
, (12.9)

measures the deviation from exponential growth. This quantity is therefore a natural measure of risk,

known in finance under the name of volatility. To understand at which time scale this risk is important,

we consider Eq. 12.8, assuming ∆t is of the order one. Risk will be important, when the term associated

with fluctuations, which is of the order of σ
√
t will be larger than the term associated with exponential

growth, which is tΛ. This will happen when t � (σ/Λ)2: the risk is relevant at intermediate time scales,

long-enough for the central limit theorem to apply but not too long for deviations from exponential growth

to become negligible.

This measure of risk has well known drawbacks in finance : it is symmetrical with respect to losses and

gains, which does not conform to the intuitive notion of risk, and furthermore typical fluctuations are

often non-Gaussian. Nevertheless, the volatility is still an important notion in the study of optimization of

portfolios [373]. In this context, Markowitz introduced plots of the volatility σ as a function of the mean

growth rate, which define the so-called “efficient frontier”. This representation illustrates graphically a

fundamental trade-off that exists between the maximization of the mean return and the minimization of

the variance (or risk). The point of zero volatility is a risk-free strategy, which corresponds to dormant

states in biology.

This trade-off is naturally present in Kelly’s model introduced in Box 2. Indeed, Kelly’s strategy is based

on the maximization of the long-term growth rate, but at intermediate times the capital can deviate sig-

nificantly from the expected exponential growth as shown in Figure 12.2. Prominent economists, such as

Samuelson, strongly opposed the use of Kelly’s criterion in finance precisely for that reason [374]. In prac-

tice, however, investors can mitigate this risk by using Kelly’s criterion for only a fraction of the bets [375].

The resulting strategy has reduced fluctuations, and at the same time, a reduced growth rate. Another
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Math box 12.C The value and cost of information for growing populations

To see how uncertainty may be quantified by Shannon , first consider a model where f(R, E) is non-zero only

for one phenotype R best adapted to each particular environment E(R). As seen in Box 2, the optimal strat-

egy in the long-term is proportional betting, u(R(E)) = p(E). To quantify the cost of uncertainty, it must be

compared to a situation where full information is available, in which case all the cells can systematically adopt

the optimal phenotype, leading to an ideal growth rate Λ∗∗ =
∑

E
p(E) ln f(R(E)). The cost of uncertainty is

Λ∗∗ − Λ∗ = −
∑

p(E) ln p(E), which is nothing but the Shannon entropy of the environment H(E). This has a
simple interpretation: the more unpredictable the environment, the larger its entropy and the lower the maximal

growth rate of the population.

The reasoning can be extended to the presence of partial , modeled by p(S|E). The case of perfect information is

indeed the limit casewhereS = E. The optimal strategywith partial information is a generalization of proportional

betting that takes into account S and the difference of growth rate is now given by the mutual information I(S, E)
(Problem 12.1). Themutual information is minimal when the signal S is uncorrelated to E, in which case I(S, E) =
0, and maximal in presence of perfect information, in which case I(S, E) = H(E) [370].
These results were first derived by Kelly [368]. They have been generalized to more general forms of f(R, E) as
well as to more general environmental processes in the context of financial investment in which case the cost of

uncertainty and value of information are no longer equal but bounded by information theoretic quantities [370,

371]. This is illustrated in Problem 12.2 with an extension of the model of persistence presented in the main text.

Information is generally costly as it implies producing and operating an accurate sensor, which may come at the

expense of growth rate. Taking into account this cost introduces a trade-off between the cost and value of infor-

mation that may justify an imperfect sensor, or even explain an absence of sensor (Problem 12.1). This trade-off

has for instance been invoked to explains that bacteria subject to infrequent periods of antibiotics evolved to

stochastically switch their phenotype rather than to sense the presence of antibiotics [372].

While the problems of information processing in biology and in finance share many analogies, it is also important

to recognize an important difference: in biology, information processing is distributed at the level of each cell,

which may perceive different signals, while in finance, information is processed by an investor who centralizes the

information. The value of information is bounded by information theoretic quantities only in the second case, or

more generally when the same common information is available to all the cells [371]. If information processing is

stochastic at the single cell level, the value of information is effectively higher (Problem 12.3).

consequence of the trade-off is that the risk near the optimal strategy (Kelly’s strategy) can be reduced

significantly provided one is ready to sacrifice a small amount of growth rate, an important lesson for

gamblers and investors. In order to build systematically improved gambling strategies with a reasonable

amount of risk in Kelly’s model, one can introduce an objective function that is a linear combination of

the growth rate with the volatility of Kelly’ model, σW , weighted by a risk aversion parameter α [376].

The method is illustrated in Problem 12.4 for the two-horse version of Kelly’s model. By optimizing this

objective function, one builds the Pareto diagram shown in Fig. 12.3 when varying the parameter α.

A general inequality characterizes this trade-off mathematically for an arbitrary number of horses. For

Kelly’s gambling model with fair odds defined in the box 12.B, it has the form

σW ≥ W

σq
, (12.10)

where σW is the volatility of Kelly’s model, W the average growth rate (the equivalent of Λ) and σq is the

standard deviation of a distribution, q(x) defined by q(x) = r(x)/p(x). This distribution compares the

probability of races outcomes described by p(x) with the risk-free strategy described by b(x) = r(x), for
which σW = W = 0 [376]. Recently, a similar bound has been derived for other well-known financial

models such as the Black-Scholes and the Heston models [377].

Let us now illustrate the implications of this trade-off for a biological population using a simple bet-hedging

model with only two phenotypes. Individuals in the population can switch from phenotype A to phe-

notype B with a transition probability π1, and with probability π2 from B to A, assuming no sensing.

The population grows in an environment that fluctuates between two values 1 and 2. We denote the



200 Cells in the face of uncertainty

0 0.5 1 1.5 20

0.1

0.2

0.3

0.4

0.5

σW

W

Trade-off branch

Non trade-off branch

Figure 12.3: Pareto diagram showing the growth rateW versus the fluctuationsmeasured by the standard
deviation of the growth rate σW (which is the volatility for this model) in the simple case that only two
horses are present. The curve can be obtained by varying a risk aversion parameter α, which enters in the
definition of an objective function (see Problem 12.4 for details). The point of maximum growth rate (red
square) corresponds to Kelly’s strategy and divides a trade-off branch (blue solid line) from a non-trade-off
branch (red solid line) (adapted from [376]).

population vector, which describes the number of individuals in each phenotype at a given time t by

N(t) = (NA(t), NB(t))T , where T denotes the transpose. The subpopulation of individuals with phenotype

A grows when placed in the environment i with the growth rate kAi, while the other subpopulation with

phenotype B grows with rate kBi. The population is assumed to be large, there is no population noise,

the dynamics of the system is deterministic in each separate environment. The population dynamics of

the model can be described by the vector equation :

d

dt
N(t) = MS(t)N(t), (12.11)

with matrices

MS1 =

(
kA1 − π1 π2

π1 kB1 − π2

)
and MS2 =

(
−π1 + kA2 π2

π1 kB2 − π2

)
. (12.12)

The finite time averaged population growth rate is defined as

Λt = 1
t

ln N(t)
N(0) , (12.13)

in terms of the total population N(t) = NA(t) +NB(t), and the long term population growth rate is

Λ = lim
t→∞

Λt. (12.14)

This optimal long term growth rate Λ can be obtained analytically in this model [378], but approximations

are needed to evaluate the fluctuations of the growth rate, which is the equivalent of the volatility σ2 of

Eq. 12.9 [379]. One can then study the trade-off that exists between the average growth of the population

(either measured instantaneously or over a long time) and the fluctuations of the growth rate, using the

same Pareto plot used for Kelly’s model in Figure 12.3. This “efficient frontier” is shown in Fig. 12.4, and as

in the case of Kelly’s model, in the region of fast growth rate, it is advantageous for a population to trade

growth for less risky fluctuations. In this model, σ2 correlates with the probability that the populationN(t)
goes below a certain threshold, where the population is considered as extinct. The probability of extinction
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Figure 12.4: Pareto diagram showing the population growth rate versus the fluctuations of that growth
rate in a simple model of a biological population evolving in a stochastic environment with no sensing
according to Eq. 12.11 [379]. In this figure, the time scale of environment fluctuations is comparable
to that of phenotypic fluctuations. The inset shows the probability Pext that the population goes below a
certain extinction level versus the risk aversion parameter αwhichmeasures the distance along the Pareto
plot. Colored bullets represent different points on the Pareto front (adapted from [379]).

is not monotonic along the Pareto front, which explains why in the region of low growth rate, it is more

advantageous to prioritize instead the increase the growth rate to avoid extinction.

In the context of ecology, besides the probability of extinction, a quantity of interest is the chance for a

population to grow from rarity in the presence of other species. In agreement with the above trade-off,

it was found that this chance can not be predicted only from the mean growth rate, and that the mean

growth rate and its variance should be both used for such a prediction [380]. In summary, the similarity of

the Pareto plots (called efficient frontier in finance) obtained in Kelly’s model and in models of biological

populations in fluctuating environments [379], and evidences from various works in ecology, suggest that

the trade-off discussed here is broadly applicable in various fields ranging from biology and ecology to

economics.

12.5 Strategies in correlated environments

So far we considered two time scales: the time scale at which phenotypic changes occur and at which

instantaneous growth is defined (t = 1 in our discrete-time model, which may be taken to correspond to

one generation), and the longer time scale t ∼ (σ/Λ)2 beyond which population growth is effectively ex-

ponential, with growth rate Λ. We saw that the choice of an optimization criterion depends fundamentally

on the time horizon relative to these time scales.

Additional time scales are relevant when environmental states are correlated in time, for instance through

aMarkov chain P (Et|Et−1). This is for instance the case if conditions of high nutrient or high stress extend
over several generations. As a consequence, strategies u(Rt|St, Rt−1) that depend on past internal states

Rt−1 in addition or instead of externally driven signals St may become valuable, since the fact that pheno-

type Rt−1 survived in environment Et−1 indirectly carries information on the current environment Et. We

may then recognize that Rt plays two distinct roles: on one hand, it determines survival and growth via

f(Rt, Et) and, on the other, it provides information to determine the next state Rt+1 via u(Rt+1|St+1, Rt).
This corresponds to the fundamental distinction between phenotype and genotype in biology: the geno-

type γ is what is transmitted from one generation to the next while the phenotype φ is what determines in-

stantaneous growth. Formally, Rt = (φt, γt) with f(Rt, Et) = f(φt, Et) and u(Rt|St, Rt−1) = u(Rt|St, γt−1),
by definition of φt and γt. The “central dogma” of molecular biology states that information flows from the

genotype to the phenotype but not reciprocally, which corresponds here to assuming that u(φt, γt|γt−1)
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Figure 12.5: Example of optimal strategies in correlated environments – (A) We consider here a
model where the environment Et is a continuous variable following a Gaussian process, P (Et|Et−1) =
exp
(
−(Et − aEt−1)2/(2σ2

X)
)
/(2πσ2

X)1/2 with two parameters a and σ2
X that control the overall ampli-

tude of the fluctuations σ2
E = σ2

X/(1 − a2) and their time scales τE = −1/ ln a, as illustrated by
the different time series. (B) An individual inherits a genotype γt−1 which determines its phenotype
φt with probability d(φt|γt−1) = exp

(
−(φt − γt−1)2/(2σ2

D)
)
/(2πσ2

D)1/2 where σ2
D thus represents phe-

notypic noise. γt−1 also determines the genotype γt of the progeny with probability h(γt|γt−1) =
exp
(
−(γt − γt−1)2/(2σ2

M )
)
/(2πσ2

M )1/2 where σ2
M thus represents mutational noise. The number ξ of off-

springs is a random variable whose mean f(φt, Et) = k exp
(
−(φt − Et)2/2

)
depends on the phenotype φt

as well as the current stateEt of the environment. A population of such individuals grows with a long-term
growth rate Λ that can be computed analytically [381]. (C) Values of σ2

D and σ2
M that optimize Λ define four

phases as a function of the environmental parameters τE and σ2
E . For nearly constant environments, the

optimal strategy is to maintain constant phenotypes (σ2
D = 0) and genotypes (σ2

M = 0) (“no variation”).
For strongly varying but poorly correlated environments, the optimal strategy is to introduce phenotypic
variations (σ2

D > 0) but no genotypic mutations (σ2
M > 0) (“phenotypic switching”). For highly correlated

environments, the optimal strategy is instead to introduce genotypic mutations (σ2
M > 0) while canalizing

the phenopype (σ2
D = 0) (“inherited variations”). A phase also exists where both types of variations are

beneficial (“mixed”). This model thus identifies environmental variations for which bet-hedging (pheno-
typic switching) is expected to evolve, namely variations of environmental of sufficient amplitude but with
limited temporal correlations across generations.

factorizes as d(φt|St, γt−1)h(γt|γt−1), where d(φt|St, γt−1) may be interpreted as a developmental kernel

and h(γt|γt−1) as an inheritance kernel, with no dependence on St (no Lamarckism). The mathematical

framework thatwe introduced can be used to study towhich extent this particular decomposition is indeed

a good “strategy” [381]. The answer generally depends on the nature and amplitude of the environmental

fluctuations.

Similarly, the model can be analyzed to understand the conditions under which it is advantageous to in-

troduce phenotypic variations that are not transmitted – as in bet-hedging – versus genotypic variations

that are transmitted – as with genetic mutations. Stochasticity may indeed be introduced either in the

mapping from γt−1 to φt or themapping from γt−1 to γt, or in both of them – a problemwith no equivalent

in finance. This is illustrated in Fig. 12.5 with a simple solvable model showing how the optimal strategy

depends on the nature of the fluctuations of the environment. In particular, bet-hedging strategies where

stochasticity is purely phenotypic are found to be optimal for environmental fluctuations of sufficient large

amplitude but low temporal correlations from one generation to the next.

Historically, the notions of genotype and phenotype were introduced much before the molecular mech-

anisms that underlie them were uncovered. In general, the genotype, defined as inherited information,

should not be confused with the notion of genetic information: along with DNA, a range of epigenetic

states, including metabolic states, are also transmitted from cell to cell which represent genotypic infor-

mation. In other words, the physiological state of a cell, which we analyzed in most of this book from the
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standpoint of a phenotype determining current growth, may also represent valuable genotypic informa-

tion for future generations.

12.6 Concluding remarks

Wepresented optimal strategies that biological populationsmay exploit for copingwith uncertain environ-

ments and drew analogies with problems of gambling and financial investments. Optimality assumes a

measure of performance which, however, is not readily definedwhen environments are changing stochas-

tically. In particular, the time scale over which the problem is considered is critical. This difficulty has led

to multiple debates over the concept of fitness in biology which partly mirror those over the concept of

utility in economics.

While the analogy with finance is instructive, its limitations should also be kept in mind. Most importantly,

the states that individuals of a biological population adopt are not centrally controlled by a gambler or an

investor. This raises a question that is absent in finance but central in evolutionary biology: is a strategy

that is optimal for the population but detrimental to some of its members – as for instance the persister

cells that “sacrifice” their current growth for the sake of future growth – evolutionary stable? A strategy

that is optimal for a population may indeed never be achieved through evolution as natural selection at

the individual level may favor non-cooperating individuals – an issue known as a “conflict between levels

of selection” which implies that a strategy may be optimal at the population level but not evolutionarily

stable. To address this question, we may extend our model to treat strategies as variables that are them-

selves subject to evolution (Problem 12.5). For the model discussed in this chapter, the results show that

strategies that optimize the long-term growth rate are indeed evolutionarily stable (but this is no longer

necessarily the case when considering, for instance, sexually reproducing populations [382]).

The same extension of the model to evolving strategies shows that knowledge of the statistics of the envi-

ronment (pd for our example) is not required a priori but can effectively be learned through an evolutionary

process. This solves a problem that appears also in gambling and finance where the statistics of the en-

vironment must be inferred from past experience. The question has been particularly studied in finance,

where optimal learning strategies known as universal portfolios have been proposed [383]. In the simpler

case of Kelly’s model, the gambler may for instance record previous race results and use them together

with Bayesian inference to predict the probability of the race outcomes [384]. With biological populations,

however, learning must be performed at the individual level. One theoretical proposal that goes beyond

randommutations is for instance that biological populations may use a reinforcement mechanism akin to

Hebb’s rule in neural learning [385].

Finally, we note that the models that we presented rely on a strongly simplifying assumption: the environ-

mental changes occur independently of the population. In fact, the environment is often also changing

as the population grows, for instance through the consumption of nutrients. Even more generally, the

environment may comprise other individuals from the same or other populations with which they may

interact. This ecological dimension is the subject of other chapters.
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Problems

Problem 12.1 Kelly strategy with partial information

In analogy with Kelly’s problem of betting on horse races, assume that different environments E oc-

cur with independent probabilities p(E) at each generation with a single phenotype R = E permitting

growth by a factor f(E). In absence of any information, the optimal strategy u(E) for long-term growth

is proportional betting, u(E) = p(E) (Box 2). Now assume that an information S is available to each

member of the population that relates to E through a transition probability q(S|E), i.e., q(S|E) is the
probability of perceiving S given E.

1. Show that the long-term growth rate can be written in the form

Λ =
∑

S

p(S)

(∑
E

p(E|S) ln(f(E)u(E|S))

)
(12.15)

where p(S) is the probability to perceive S averaged across all environments and p(E|S) is the prob-
ability that environment is E given that S is perceived. Write p(E|S) as a function of p(E) and q(S|E).

2. Justify that the optimal strategy is u(E|S) = p(E|S).
3. Compare the optimal long-term growth rate in presence of information to the optimal growth rate in

absence of information and show that the difference is given by the mutual information

I(E,S) =
∑
E,S

q(S|E)p(E) ln q(S|E)
p(S) (12.16)

The mutual information I(E,S) therefore quantifies the value of information S in this particular con-

text.

4. Acquiring information is generally costly. If the presence of the information channel q(S|E) reduces
the long-term growth rate by c, what are the conditions on p(E) for the presence of this channel to

be beneficial?

5. The cost cmay be expected to depend on the precision of the sensor. Consider for instance a channel

that reveals the correct environment with probability 1−ε and otherwise does not reveal anything (so-
called erasure channel). Given a cost c(ε) that increases when ε decreases, which value of ε provides

an optimal trade-off between the value and the cost of information?

Problem 12.2 Value of information beyond Kelly’s model

Consider the model of bacterial persistence introduced in the main text where cells can adopt two phe-

notypes, one growing irrespectively of the environment and the other growing only in absence of antibi-

otics.

1. Express the long-term growth rate Λ in presence of an information S modeled by an information

channel q(S|E).
2. What is the optimal strategy given S?

3. Show by comparing to a situation with no information that the value of information can be strictly

lower than I(S,E).

Problem 12.3 Stochastic sensing at the level of individual cells

In the two previous problems, the information S is assumed to be common to each member of the

population. Here we assume instead that each individual has its own sensor q(S|E) so that S may differ

from one individual to the next.
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1. Justify that in this case the long-term growth rate takes the form

Λ =
∑

E

p(E) ln

(∑
R,S

f(R,E)u(R|S)q(S|E))

)
(12.17)

2. Use the concavity of the logarithm (Jensen’s inequality) to justify that the same information channel

q(S|E) has more value at the individual level than at the population level.

Problem 12.4 Pareto front for Kelly’s model

Let us consider Kelly’s model with fair odds for two horses. Let the probability that the first horse wins

be p, the bet and the odd on the first horse be b and 1/r.

1. Write the expression of the mean growth rate 〈W 〉, and of the volatility σW for this problem. Show

that there is a risk free strategy when b = r.

One introduces the objective function

J = α〈W 〉 − (1 − α)σW . (12.18)

2. From the optimization of J show that the optimal strategy has the two branches shown in Fig. 12.3.

Show that the optimal bets on these two branches are of the form b± = p± γσ, where γ = (1 − α)/α
and σ =

√
p(1 − p).

3. Show that the slope of the Pareto border has the form

dσW

d〈W 〉 = σ

p− b
. (12.19)

What happens to this slope near Kelly’s point and near the risk free strategy ?

Problem 12.5 Evolution of an optimal strategy

Here we consider evolving the strategy itself.

1. Implement numerically the model of bacterial persistence introduced in the main text for a large but

finite population. To this end, consider N individuals (e.g., N = 1000), each with an attribute R. For

each individual, draw a random number ξ of descendants, with mean f(R,Et) where Et drawn from

P (E) is common to all individuals. Assign a R to each of these descendants with probability u(R). If
the total number of descendants Nt is non-zero, record the ratio Nt/N and re-sample at random the

population to bring back its size to N . Show that provided that N is large enough and Nt does not

reach 0 then (
∑

t
ln(Nt/N))/t provides a good approximation to the growth rate Λ in the limit of large

t.

2. Extend the model to make udu(R = dormant) an attribute of each individual. Assume that ud is trans-

mitted from one parent to one of its offspring as ud = min(1,max(0, ud + µ)) where µ is normally

distributed with variance σ2
M . Show that provided that σ2

M is small enough, the distribution of ud

evolves to be centered around the optimal ud.
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Chapter 13

Strategies for cell size control

Mattia Corigliano, Marco Cosentino Lagomarsino, Jacopo Grilli, and Gabriele Micali

Chapter overview

◦ Cells require coordination of growth and division, as well as coordination of cell-cycle progression

with several essential sub-tasks, such as chromosome replication and segregation.

◦ Single-cell dynamics data offer correlation patterns that can be used to understand these decisional

processes.

◦ The cell-cycle progression and cell-division decisional process can be described by continuous-time

and discrete-time stochastic processes.

◦ There are quantitative relationships that connect growth, cell-cycle progression, and resource allo-

cation.

◦ There are differences and common points in the decisional processes by which single cells of dif-

ferent organisms commit to divide (sizers, adders, accumulators, titration-dilutors, etc.)

13.1 Introduction: the decision to divide illustrated through

single-cell E. coli data.

As nicely put by the Nobel prize winner François Jacob, “the dream of every cell is to become two cells”.

Achieving this dream often requires multiple steps, such as growing by a certain size, replicating DNA, and

dividing. The previous chapters have addressed cell growth as a consequence of optimization of catabolic

and biosynthetic fluxes through optimally regulated resource allocation; this chapter deals with the de-

cision to divide (and to progress the cell cycle), based on growth and other important cellular processes

and cues. Clearly this decision to divide or progress the cell cycle must be based on a set if inputs (growth,

production processes such as DNA replication and cell-wall biosynthesis, partitioning processes, etc.) and

entails several outputs, prominently cell division, but also intermediate key cell-cycle substeps, such as

initiation of DNA replication or construction of a “divisome” organelle. The questions that we will consider

concern the characterization of the known aspects of this decisional process and its coupling to cell size,

to cell growth, and to the chromosome cycle. We will use throughout the chapter E. coli as an example.

This section provides a description of the main problem through an introduction to the data, based on

E. coli bacteria. Sections 2-5 start from a mathematical toolbox of models that are useful in this context

and compare them with data. Finally, section 6 describes applications to other organisms than E. coli.

Capturing the key processes regulating cell division is a fundamental question in biology, which remains

open despite a history of more than 60 years. During the years, scientists have learned a great deal about
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Figure 13.1: Salient quantitative features of cell-division control, explained through E. coli data – (A) E. coli
cells are rod-like. Within a condition they grow by increasing their length, and they divide symmetrically.
Following single-cell lineages, growth in length or volume is close to exponential. (B) Size-growth plots
quantify the strength of division control. For a timer, multiplicative growth quantified by G = log(sd/s0)
is uncoupled to birth size, for a sizer, it is maximally coupled. The single-cell data show an intermediate
trend. (C) SinceG = log(sd/so) = ατ , the size-growth plot can be split into contributions correlationg birth
size to growth rate (top) and/or interdivision time. The data show that E. coli bacteria only compensate by
modulating interdivision times. (D) Equivalent quantifications of the strength of the division control size
(right). The intermediate control strategy adopted by E. coli adds a size that is independent from the initial
size (“adder”). This strategy is sufficient to achieve size homeostasis.

the size and shape of bacteria in different nutrient conditions, whatmost of themolecular players involved

in the division process are, how the DNA replication machinery is formed and how it proceeds along the

chromosome, how the septum and the new cell wall are synthesized. However, the vast majority of these

data are based on population averages, out of which it turns out to be impossible to extract any direct

and/or causal link between the different processes involved in cell growth that set cell division [386]. Today,

a new generation of data has the potential to answer several open questions [386, 387, 388]. These data

differ from the previous generation in the ability to measure single bacterial cells over multiple division

events in controlled conditions. At the same time, the expression of a specific gene or the concentration of

specific proteins of interest can be monitored using fluorescent reporters. For example, fluorescent tags

on the proteins involved in replication are used to score the initiation of replication in each cell cycle. Single-

cell data allow for validating mathematical models and thus bring insights into the causal link between the

several processes a cell need to complete before dividing.

By following lineages of cells over multiple generations under controlled environmental conditions, scien-

tists collected different important pieces of evidence (Figure 13.1): First, within a cell cycle, the cell size s(t)
is well-described by a single exponential in time1 [391, 392]: s(t) = s0 exp(αt), where s0 is the size at birth,

α is the growth rate, and t is the time since cell birth.

If division occurs at time τd, a simple relationship connects the size at division sd with the other cell prop-

erties: sd = s0 exp(ατd). All the four parameters of this equation are subject to stochasticity in time and

vary across single cells, even when they grow in controlled conditions. Second, in steady growth, the size

distribution of newborn cells does not change over time, an observation that is referred to as cell-size

homeostasis [389]. Equivalently, cells show specific correlation patterns between size at growth and size

at division, which are related to their cell-division strategy [393, 389].

Let us try to understand more in detail how single-cell correlation patterns can be used to understand

cell-division behaviors. The observation of near-exponential growth immediately suggests a change of

1Note that most of the studies today use cell length as a proxy for size. However, different choices are possible such
as volume or mass, and the differences are not fully characterized [389, 390].
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variables that is useful to formulate mathematical models and to understand how single cells control cell

division. Indeed, if we can assume that growth is exponential, we can use logarithmic sizes instead of

linear sizes. One robust observation, is that the elongation G = log(sd/s0) = ατ depends on the size at

birth s0 (Figure 13.1B). This allows us to generate so-called “size-growth” plots (Figure 13.1B), in which the

log-multiplicative growth during a cell cycle of a single cell is plotted as a function of the logarithmic size

at birth [393]. Different mechanisms of size control predict different slopes for this plot. A cell division

set by a “timer”, for instance, would predict no relation between G and size. Since G = log sd − log s0, if

instead log sd were independent of the initial size, a “sizer”, one would predict a slope = −1. The E. coli

data typically fall half way in between these two predictions, a negative slope of about 0.5 (Figure 13.1B).

By noticing that the overall logarithmic growthG during a cell cycle is the product of the single-cell growth

rate and inter-division time (G = ατ ), we can ask the question ofwhich one of these variables is responsible

for the correlation. This analysis disentangles the contributions to cell division control due to growth rate

and inter-division timing (Figure 13.1C). In other words, the dependency of G on initial size can be further

decomposed on the dependency of growth rate α and division time τ . In E. coli, when growth rate and

interdivision times are plotted separately as a function of the logarithmic size at birth, the negative slope

is only observed in the interdivision-time plot, suggesting that cell control size by adjusting the single-cell

interdivision time rather than their single-cell growth rates. Hence, E. coli data indicate that τ does depend

strongly on initial size, while the growth rate has only a weak dependency [392].

One can visualize and quantify themutual dependencies between cell sizes and growth properties in other

equivalent ways (Figure 13.1D). For example, in E. coli data, the scatter plot relating size at division in the

y-axis to size at birth in the x-axis for single cells has a slope of around 1 (and once again this observation

holds true for different strains and under different environmental conditions). In this plot, a slope of 0

would suggest that cells on average need to reach a threshold in size upon division, a sizer. More techni-

cally, the division size sd is independent on the initial size s0 in the case of a sizer. Instead, a slope of 2 in

this plot would suggest that cells on average need to wait a fixed time upon division, a timer. The observed

intermediate slope of 1 can also be understood using the equivalent plot in which the added size between

birth and division is used on the y-axis, studying the dependency of the added size sd − s0 on s0. This

latter way to plot the data is particularly popular, given that, for many datasets it shows no dependency,

suggesting that adding a constant added size is the mechanism of size control effectively in place. Indeed,

for E. coli the experimentally observed slope is always close to 0 [394, 395, 389], an observation that goes

under the name of “adder” behavior since cells appear to add on average a constant size during the cell

cycle (Figure 13.1(B,D)).

It is fairly simple to rationalize why, for exponentially growing cells, a cell division strategy based on a timer

does not achieve a homeostatic size. In order to do this, we can call q(i) = log(s0(i)) the logarithmic cell

size at birth of cell-cycle i, and look at its dynamics through subsequent cell cycles. Since s(τ) = s0 exp(ατ),
and 〈ατ〉 = log 2, and assuming that cells divide perfectly in two halves, one immediately gets that

q(i+ 1) − q(i) = ν(i)

where ν(i) is a zero-average randomvariable independent for each cell-cycle, arising from the size-independent

fluctuations of inter-division times (hence, in technical jargon, we can model ν as a discrete-time Marko-

vian random process). Since the jumps in logarithmic size between subsequent cell cycles are random and

independent, cell size at birth makes a discrete-time multiplicative random walk, hence, within a popula-

tion, the distribution of cell sizes at birth tends to get wider and wider across divisions. The following two

sections will explain how size homeostasis can be achieved by size-coupled cell divisions.

13.2 Hazard rate approach to cell division

As we have seen in the previous section, E. coli cells grow roughly exponentially. Hence, we can describe

their growth by a trajectory for size s (measured as cell mass or volume) of the kind s(t) = s0 exp(αt),
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Figure 13.2: Illustration of the inverse hazard rate approach on data – Data from many lineages of di-
viding cells can be used to estimate the cumulative distribution of non-divided cells, which can also be
conditioned on different variables. The drawn example refers to the case where the tested variable is the
added size s − s0. In this case, the formalism allows to extract mathematically the hazard rate hd(s − s0)
from this distribution. Experimental E. coli data are consistent with this adder scenario, with an hazard
rate that peaks at a characteristic added size, after which the division control weakens.

where t is time from cell birth. While experimentally the growth rate α fluctuates with time, we will ne-

glect its variability and assume for the moment that it is constant. As a consequence, the cell grows as a

simple exponential function of time. We will address different hypotheses regarding this point in the later

sections.

A simple way to describe the decision processes leading to division (or other cell cycle progression events)

is the so-called “hazard rate” model [396, 392, 395]. In this framework, as the cell cycle progresses, each

cell has a certain probability to divide, and we call hd the rate of cell division. In principle, this rate can

be a function of many different internal cellular parameters, all the processes that contribute setting cell

division. However, since we have in mind experiments measuring cell size versus time and recording

cell divisions, the most general “empirically accessible” hd can depend on s, t, s0, α with the constraint

that s/s0 = exp(αt). This means that there can be at most three free parameters. We can also consider

simplified models, such as hd = hd(s) or hd = hd(s, t). Empirically, the lack of correlation between α and

birth size suggests a smaller role for this parameter. It is important to realize that this formalism is very

powerful, as it can be applied more widely to any sub-cell cycle decision (for example, entry into a specific

phase, such as initiation of DNA replication, mitosis, etc.), and to measurements of different relevant cell-

cycle processes (for example chromosome configurations or the expression of cell-cycle proteins or other

factors), which the hazard rate may depend on.

Given a model for the hazard rate, we are interested in the cumulative probability F (t|s0, α) that a cell

born at t = 0 has not divided at time t, given that its initial size is s0 and its exponential growth rate α. Box

13.A discusses the mathematical formalism to obtain this probability.

The considerations we made so far are sufficient to produce “forward models” where a hazard rate is

assumed, and one explores its consequences on the division dynamics. The simulation of such a model

is straightforward. For each discretized time increment dt, the cell will grow by the prescribed dynamics

s(t) and will divide with hazard rate hd. If a division occurs, the mother’s cell size will halve, and go from s

to s/2 (we assume for simplicity perfect binary divisions, but this assumption can easily be relaxed). What

is a “sizer” in this framework? We can define it as a model where hd = hd(s) [397]. Equally, a timer is

a model where hd = hd(t), and an adder has hd = hd(s − s0). At this stage, it is only intuitive, but not
formally grounded, that the scatter plots of the previous section correspond precisely to these models.

This problem will be discussed in section 13.3. Note that not all the choices of hazard rates will guarantee

a steady-state cell size distribution. As a particular case, one can consider a constant division rate hd(t) = r,

which is a simple Poisson process (see the problem above). This is a pure timer and we expect that it will

not maintain a steady-state cell size distribution (the reader can verify it, e.g. by simulations).

Beyond the forward approach, we would like to recognize the trends in the data that favor one model

rather than another. In particular, we can ask which model best describes the E. coli data, presented in

the first section of this chapter. This question is a “reverse problem”, and is equivalent to the inference of

the hazard rate hd from data (Figure 13.2). It is a very common reverse problem for the literature, used
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Math box 13.A Probability distribution of (un)divided cells

This box derives the probability distribution of (un)divided cells from the hazard rate. The probability that

a cell divides between time t and t + dt is the probability of not having divided so far times the probabil-

ity of dividing between t and t + dt, in turn given by the product of the hazard rate and the time interval dt,

F (t|s0, α)hd(s(t), t, s0, α)dt. During the same time interval, the cumulative probability of not having divided will

decrease by the same amount. Hence, we can write

F (t + dt|s0, α) = F (t|s0, α)[1 − hd(s(t), t, s0, α)dt] . (13.1)

In the limit of dt → 0 we obtain a differential equation, which governs the evolution of our system

d

dt
F (t|s0, α) = −hd(s(t), t, s0, α)F (t|s0, α) , (13.2)

and whose formal solution is (for t ≥ 0)

F (t|s0, α) = e
−
∫ t

0
dzhd(s(z),z)

. (13.3)

Sincewe said that the probability of a cell division event in the time interval [t, t+dt] isP (t|s0, α)dt = F (t|s0, α)hddt,

the corresponding probability density is

P (t|s0, α) = hd(s, t)e−
∫ t

0
dzhd(s(z),z) = −

d

dt
F (t|s0, α). (13.4)

Alternatively, the size s can be used as a coordinate, considering for s > s0,

F (s|s0, α) = e
−
∫ s

s0
dzh∗

d
(z,t(z))

, (13.5)

while F (s|s0, α) = 0 for s < s0. Here, h∗
d(s, t(s))dx is the probability of cell division in the size range between s

and s + ds. The two rates are simply related by h∗
d(s, t(s))ds = hd(s(t), s)dt, where ds/dt = hg(s) = αs is the rate

of growth.

for example in the so-called “survival analysis” in clinical studies [398]. In that case, the hazard rate typi-

cally corresponds to a one-time negative outcome (death of the patient) and the process is not repeated

along lineages as in the case of cell divisions. However, the mathematical ingredients are very similar.

Consequently, there are many regression methods available in the literature, which can be transferred to

our case. One of the most famous is Cox regression [399]. However, most of these regression methods

need an ansatz for the parameterization of the model, which might be a nuisance, as it would require

some previous knowledge. Here we consider a simpler, direct inference method, which does not need

any parameterization (but is effective only with a sufficient amount of data, i.e., for many cell divisions).

Suppose for simplicity we deal with a sizer. In this case, it is possible generate an estimator for the func-

tional form of hd(s) using Eq. (13.5). By inversion, we obtain

hd(s) = −αs d
ds
log[F (s|s0)], (13.6)

where F can easily be estimated from data, from the cumulative fraction of undivided cells at size s with

initial size s0. In our case, we can use the mean value of the growth rate 〈α〉, since we are neglecting

fluctuations in growth rate.

Since we do not knowwhether our assumption of a sizer apples to data, we can first combine the data and

the inference to falsify the assumption [392]. In order to do this, we can further condition our histograms

in order to fix s0. If hd depends solely on s, then the inferred function h̃d should not change with varying

s0. This is indeed the case if the procedure is applied to simulated data. However, when we apply the

same procedure to the experimental data shown in the previous section, the inferred hd(s) changes if it is
inferred for different bins of birth size s0. Hence, we conclude that our E. coli data do not behave as a sizer,

in the sense of the hazard rate. Instead, if we consider the adder ansatz for the hazard rate hd(s − s0),
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and we repeat the procedure, we find that further conditioning by birth size or time from birth does not

change our inferred hazard rate [395]. Hence, we can conclude that a hazard-rate analysis of the data

supports an adder (or at least that the data cannot falsify this simple model).

How does the inferred hd depend on size? Curiously, for any fixed s0, hd increases superlinearly for small

cell sizes, then reaches a maximum after which it decreases. In other words, some cells may “miss” a cell

division event and keep growing until they find a better occasion to divide. This process is called “fila-

mentation” (because the cells that miss one or more division elongate and end up looking like filaments),

and is typically the consequence of stress, but also present in stress-free growth conditions. experimental

observations show that E. coli forms filaments in response to DNA damage, antibiotics, host immune sys-

tems, temperature, starvation, andmany other stresses. As a consequence, size plasticity may be in many

cases an adaptive strategy. The quantitative division rules of filamentous E. coli cells have been studied

experimentally [400], but we lack a comprehensive mathematical model.

One very robust observation of cell division statistics, in E. coli and beyond [401, 395, 402, 403], is that

the distributions of size at birth, size at division, and division times measured across conditions, collapse

onto the same curve when rescaled by their mean. For instance, the distributions around these values are

clearly non-overlapping: the single-cell birth-size distribution in glucose pglu(s0) strongly differ from the

one in TSB medium pT SB(s0). In particular, the typical size at birth for E. coli growing in glucose 〈x0〉glu is

about 2/3 the size of E. coli growing in TSB 〈s0〉T SB and the average division time 〈τd〉T SB is TSB is half the

one of E. coli in glucose 〈τd〉glu. This appears to be valid across different environmental conditions (e.g.,

nutrient quality, temperature, pH, etc.). The remarkable empirical observation is that, when comparing

two conditions, the rescaled distribution is universal. If we introduce the rescaled size s̃0 = s0/〈s0〉c, the

distribution of s̃0 is universal, independent of the condition. This observation applies also to size at division,

added size between divisions, interdivision time, and, to a certain extent, growth rate [402].

An obvious question that follows from this observation is how the size-scaling properties of cell-size at

birth constrain the mechanisms of homeostasis and the properties of stochasticity at the single-cell level.

A necessary consequence of the distribution collapse is that the processes leading to single-cell hetero-

geneity and homeostasis must have common underlying properties across conditions. Conditions differ

because they are characterized by different dimensional scales, but, phenomenologically, division control

is governed by the same underlying principles (although the keymolecular playersmay vary). The collapse

of all the distributions, when the variables are rescaled by the mean has another, stronger, consequence:

whatever the division control mechanism is, it depends on only two scales, a size-scale (setting the typical

cell size) and a temporal scale (setting growth rate and division time).

This constraint has strict consequences on the variability of the hazard rate across conditions. In particular,

it implies that the hazard rate must take the mathematical form [404]

hd(s(t), s0, tα) = αh̃

(
s(t)
〈s〉c

,
s0

〈s〉c

)
, (13.7)

where the function h̃(·, ·) is the same across conditions. The dependency on α and t disappears, as the

scaling of division time, implies the existence of a unique time scale. Since h̃(·, ·) is by definition adimen-

sional, it can only depend on the product αt, which can always be re-expressed as a function of s and s0,

as αt = log(s(t)/s0). While this is a powerful observation, as it allows to naturally connect division mecha-

nisms across conditions, it does not provide any evidence to a particular decisional mechanism enforcing

cell division, which is encoded in the function h̃(·, ·). Addressing this question needs further experimental

details.
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13.3 Cell-division control as adiscrete-time linear responsepro-

cess

In the previous section, we have seen how the cell-division control mechanism can be mathematically de-

fined using the hazard-rate framework. This approach uses as a fundamental ingredient the probability

per unit time of cell division hd, which is, a-priori, a function of many internal cellular parameters. This

approach is, in some sense, very general, as it allows to characterize any complex cellular decision pro-

cess. However, this generality limits the tractability and interpretability of the model. In this section, we

introduce an alternative discrete-time mathematical framework which greatly simplifies the parameteri-

zation and the interpretation of a cell-division control model [405, 406], and easily maps to the empirical

parameters discussed in Figure 13.1.

Specifically, instead of tracking the division rate at different stages of the cell-cycle, it is often convenient

to model directly the cell size at birth across different generations. In this case we can, in full generality,

write

si+1
0 = f(si

0, α, . . . ) + ηi(si
0, α, . . . ) . (13.8)

where si
0 is the birth size of the cell at generation i. The function η(·) represents a random variable whose

mean is equal to 0 and having, a priori, arbitrary probability distribution. The function f(·) described the

control over cell division. Specifically, the function f(·) can be simply (almost tautologically) defined as the

conditional average of the size at birth at generation i + 1 given all the variables that contribute to cell

division control (the previous size at birth, the growth rate, and others),

f(si
0, α, . . . ) := 〈si+1

0 〉|xi
0,α,... . (13.9)

The random variable η(si
0, α, . . . ) characterizes the fluctuations around this conditionally averaged birth

size.

This formulation of the process is as general as the hazard-rate formalism as it allows to express any

division probability F (s|s0, α, . . . ). Eq. (13.8) simply isolates the contribution of the (conditional) average

size at division from the deviations from this average. This separation is useful because it allows a clear

interpretation of themechanism of division control, and because the conditional average size at division is

typically accessible from single-cell experiments. For instance, a timer corresponds to f(si
0, α) ∝ si

0, where

the proportionality constant equals exp(ατd)/2. A sizer corresponds to f(·) being a constant, independent
of the initial size si

0. Along the same lines, an adder is defined as f(si
0, α) = (si

0 + ∆(α))/2, where ∆(α)
corresponds to the (average) added size. The formalism also shows how there is a continuum of possible

intermediate behaviors besides these three limit cases.

Given the facts that growth is exponential, and the distribution of sizes at birth is approximately Lognor-

mal [395, 402], it is once again convenient to introduce the logarithmic size qi
0 = log si

0. One can derive

the dynamics of the variable qi
0 as a function of the dynamics defined in Eq. (13.8) [404]. This procedure

is described in Box ??. Since the fluctuations of this variable are small, this dynamics is fully specified by a

set of linear-response parameters λab relating the main observables (i.e. in our case each of the variables

a, b can be q0, α, τ,G).

The linear-response framework offers a flexible and analytically tractable tool to formulate and explore

different models of division control. The models can be constrained by correlation patterns measured in

data, quantified for example by covariances, which relate to the coupling parameters λab. However, the

question remains of whether such models are consistent with data. For E. coli data, the linear-response

framework predicts the correct consistency relations between experimental measurements, thereby con-

firming its usefulness to characterize empirical data [406]. A second, more biologically relevant, question

is identifying the biological mechanism reproducing the observed dependency patterns. As already dis-

cussed, the observation that λqq ∼ 0.5 is a strong indication of adder-like size-control mechanisms [405,

395, 404, 406]. Interestingly, one can show that the non-zero correlation between growth rate and log-
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initial size 〈δαi+1δqi
0〉 can be explained because of the correlation betweenmother and daughter single cell

growth rates (the presence of a non-zero value λαα and a dependency of the division size on the growth

rate (a non-zero term λqα). Such a relation between parameters point to some dependency on the size

at division on the single cell-growth rate. For E. coli, it is possible [406] to reproduce the empirical values

of these coupling parameters by assuming an adder model where the added size depends exponentially

on the single-cell growth rate, following the same dependency it has on the population growth rate (this

behavior will be discussed in more detail below, and is sometimes termed Schaechter’s Law [407]).

13.4 Coordination of cell division with different cell-cycle pro-

cesses

In the previous sections, we learned that E. coli single-cell dynamic data reveal the adder size-control be-

havior, which allows bacterial cells tomaintain size homeostasis. We also discussed amathematical frame-

work that describes how size control is achieved, and, in particular, how the key measured variables (log-

arithmic size at birth, interdivision time, growth rate, and total growth during a cell cycle) are connected.

Here, we introduce a joint description of the DNA replication cycle, which at the modeling level makes it

necessary to partition the cell cycle into sub-periods. We then present the key elements and observations

around the debate on whether and how DNA replication and genome segregation is limiting cell division

in E. coli. In presenting this debate we aim to (i) highlight the positive and innovative aspects of some of

the cornerstone studies of recent years, (ii) provide the reader with robust tools necessary to compare

mathematical models against data. Finally, we conclude the section by underlying a few open questions.

It is a classic question in biology [409, 410] how cells achieve the precise coordination of the cell cycle with

chromosome replication and segregation is necessary for cell survival. DNA replication defines a way to

subdivide the cell cycle into sub-periods. In E. coli, the period between cell division and initiation of DNA

replication is normally referred as the B-period. The C-period is the period needed to complete replication.

Bacterial DNA is organized in circular chromosomes which replicate starting from a well-defined “origin”

region (called ori locus). The replication machinery moves bi-directionally, and the two “replication forks”

proceed approximately at the same speed and terminate in a “terminus” region of the chromosome called

ter locus [411, 412, 413]. For E. coli cells dividing at mean interdivision times from about 20 minutes to

about one hour, the replication speed is approximately constant, resulting in an approximately constant

C period of around 40 minutes [414]. The D-period is the period that lasts from the end of replication to

the next division which thus includes segregation and septum formation. Note that the inter-division time,

i.e. the time between two consecutive division events, can be as short as 20 minutes in E. coli. How can a

cell with a division time shorter than the C-period duration have at least two copies of the DNA? Classical

studies have shown that E. coli and other bacteria can set up multiple overlapping rounds of replication,

as summarized by Cooper and Helmstetter in 1968 [410]. For example, a cell at birth is already replicating

DNA and has two forks. During the cell cycle, two new initiation events take place, whichwill only terminate

in the daughter cells [415]. We will refer to the “G-period” and the “I-period” as the periods between two

consequent division and initiation events, respectively.

As briefly mentioned in the introduction of this chapter, the recent single-cell experiments allow to score

initiation and termination of DNA replication by fluorescently tagging proteins involved in the formation

of the replication forks or directly the ori locus [416, 417, 418, 419, 408]. The scoring of initiation and

termination makes it possible to produce the size-growth, and the equivalent adder, plots for any of the

sub-periods BCD 2 as well as for the G- and I-periods (jointly). In the remainder of this section, we will

refer to the slope of the size-growth plot of a sub-period X (X= B,C,D,G, or I) as λX , and to the slope of

the corresponding adder plot as ζX . The two slopes are linked by the equation (1 − λX) = ζX +1
QX

, where

QX = exp(〈growth during X〉) (see Mathematical Detail Box 13.B).

2Note that under fast-growing conditions the termination is experimentally harder to score reliably and hence in
many studies the C and D periods of single cells are considered together as a “CD period”.
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Figure 13.3: Comparison of different cell-cyclemodels including chromosome sub-periods proposed in the
literature for E. coli – (A) The DNA replication-segregation cycle divides of the cell cycle into sub-periods.
The B-period is the period between cell birth and initiation of DNA replication; the C-period is the period
needed for completing DNA replication; and the D-period is the period between the termination of DNA
replication and cell division. Finally, the I-period is the period between two consecutive initiations of DNA
replication, which usually spans two generations. (B) Scheme of the ‘replication-centric’ class of models in
which DNA replication-segregation sets division (first column). These models usually assume that the CD
and the I periods are adders (blue lines in the third and fourth column, respectively), in agreement with
data (red lines in the same panels). The G-period correlation pattern is a prediction of themodel in general
agreement with data (yellow vs red lines in the second column). (C) Schematic for the ‘replication-agnostic’
class of models in which a process starting at cell birth drive division (first column). These models assume
the G and I periods to be adders (blue lines in the second and fourth panels, respectively). The C+D period
correlation pattern is a prediction of this model which does not agree with the available data (yellow vs red
lines in the third panel). (D) Schematic for the ‘concurrent cycles’ class of models in which two processes
compete to set division through an AND gate (first column). These models assume the I periods to be
an adder (blue lines in the fourth column) and using additional parameters predict both adders in the G
and C+D periods (yellow lines in the second and third column). (E) Plotting the slope of the G versus the
C+D-period allows to compare the different models with data. Schematic similar Figure 4 in [408].

Having formally defined sub-periods for the cell cycle and the corresponding linear-response formalism,

we now proceed by discussing a schematic overview of the experimental observations in E. coli that any

mathematical model should reproduce:

◦ The G-period shows an adder behavior, (λG = −0.5, ζG = 0) [394, 395].
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Math box 13.B Linear formalism and adder plots

This box shows how to translate the linear response (“λ-formalism”) to an equivalent formalism based on the

slopes of adder plots (“ζ-formalism”). The interested reader can findmore information in [405, 406, 423, 425, 408].

As discussed previously, Eq. (C.2) makes it possible to estimate the linear-response parameter λ in experimental

data from the covariance of log-size fluctuations between subsequent generations, by noticing that (1 − λG) =〈
δqi+1

0 δqi
0

〉
σ2

q0
, where we refer to λ in Eq. (C.2) as λG, to highlight the fact that this equation refers to the G-period.

Exponential growth dictates that 2si+1
0 = si

0eαiτi
, where si

0, αi, and τ i are the size at birth, the growth rate and

the interdivision time, respectively. For the cell cycle i one can expand the logarithmic growth Gi
G := αiτ i around

its average value (〈GG〉 ' log 2) in terms of variations around the logarithmic size at birth qi
0 := log si

0. Following

this procedure, the cell size at birth of generation i + 1 within a lineage can be expressed as a function of the

parameters of generation i, as follows,

2si+1
0 = QG

(
si

0
)1−λG 〈s0〉λG + νi

0 , (13.10)

where QG = e〈GG〉 = exp 〈log sd/s0〉, sd is the cell size at division and νi
0 is a discrete-time Gaussian noise with

mean zero and standard deviation σs0 . Expanding around the average size, for small fluctuations we obtain a

mapping between added size and slope of the size-growth plot,

2si+1
0 = QG 〈s0〉 + (1 − λG)QGδsi

0 + νi
0

δ∆i
G = + [(1 − λG)QG − 1] δsi

0 + νi
0.

Here ∆i
G = si

f − si
0 is the added size during a cell cycle, and δ∆i

G = ∆i
G −

〈
∆i

G

〉
is its fluctuation. Hence, by

definition, the term in square brackets must be the slope of the adder plot

ζG := (1 − λG)QG − 1. (13.11)

Solving the equation for λG, we get

(1 − λG) =
(ζG + 1)

QG
, (13.12)

which can be used (assuming as usual small fluctuations) to convert the slope ζG of the adder plot into the slope

of the size-growth plot λG, and vice-versa.

◦ The C-period duration is approximately constant across cells and experimental conditions with, a ten-

dency to increase for slow growth rates and the C-period generally shows a timer behavior3 (λC = 0,
ζC = QC − 1) [420, 421, 422, 416, 412].

◦ The I-period shows an adder behavior, (λG = −0.5, ζG = 0)[423, 419, 418].
◦ The CD-period shows an adder behavior (λCD = QCD−1

QCD
, ζCD = 0)[419, 424].

◦ The single-cell growth rate and the duration of the CD period are inversely proportional [417].

Other interesting observations that are considered in themathematical models we will present shortly are

◦ E. coli cells divide symmetrically with a narrow distribution of division length with CV = 0.05 [392]. Note

that this CV is lower than the CV of both the growth-rate distribution (CV ≈ 0.1) and interdivision time

distribution (CV ≈ 0.2).

◦ The growth rate of the mother cell is correlated positively with the growth rate of the daughter cells,

with a Pearson correlation of around 0.5 [391].

The mathematical models proposed in the literature can all be described with the general framework we

provided so far. However, they are different in terms of ingredients and relevant variables (Fig. 13.3).

Specifically, they can be grouped into two broad classes with fundamentally different views on the role of

DNA replication, its impact on cell division control, and ultimately on how the cell division and replication

cycles are coupled [425, 426, 412, 418, 419]. A class of ‘replication-centric’ models see the completion of

3Given the difficulty in observing the C-period in single cells, this last question requires further experimental inves-
tigation.
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Math box 13.C Comparing cell-cycle sub-periods models with data

This box describes the quantitative tools necessary to systematically compare cell-cycle sub-periods models with

data using the linear-response formalism and size-growth plots. Since the formalism may become very heavy,

to avoid complications we will present the the case of slow-growth conditions, in which there are no overlapping

replication rounds. In addition, we will assume that the growth rate is a constant parameter and we will assume

perfectly symmetric division.

Replication-centric models assume λCD and either λB or λI to be input parameters in the model. Here, we

focus on the case in which λ∗
CD and λ∗

I are fixed, which is the case for the Cooper and Helmstetter, Ho and

Amir, and Witz et al models [410, 428, 429]. In these models, one has that δqi+1
I = (1 − λ∗

I )δqi
I + ανi

I and

δqi+1
0 = (1 − λ∗

CD)δqi
I + ανi

CD , where qi
0 and qi

I are the logarithmic sizes at birth and initiation of the cell cycle

i, respectively; α is the growth rate, and νi
I and νi

CD are the white noise contribution related to the I and CD

periods, respectively. In this class of models, λG and λB are mathematically linked to λ∗
CD and λ∗

I , which provides

predictions that can be validated or falsified with data:

(1 − λG) :=

〈
δqi+1

0 δqi
0
〉

σ2
q0

=
(1 − λ∗

CD)2(1 − λ∗
I )σ2

qI

σ2
q0

, (13.13)

(1 − λB) :=

〈
δqi

Iδqi
0
〉

σ2
q0

=
(1 − λ∗

CD)(1 − λ∗
I )σ2

qI

σ2
q0

. (13.14)

Note that by combining (13.13) with (13.14), we also get the relationship

(1 − λG) = (1 − λCD) (1 − λB) . (13.15)

DNA replication as the crucial checkpoint for cell-cycle progression, which fundamentally limits division

and initiation events [417, 419]. Instead, ‘replication-agnostic’ models assume that cell division is limited

by a cell cycle-related process such as septum or cell wall formation and not by DNA replication [427, 418].

The linear-response theory over sub-periods coupled with the new-generation experimental observations

on single cells gives us a powerful tool to compare the different models (see Box 13.C). Crucially, while

the slopes of the size-growth plots are ultimately correlation patterns, the interpretation of the causal link

between them changes across different models. For instance, the replication-centric models generally

assume that two parameters among λI , λB , λCD are input variables, fixed by an underlying molecular

mechanism, while λG is an output of the model, i.e. an emergent correlation pattern predicted by the

model. In contrast, the replication-agnostic models assume a mechanism for the G-period (λG is fixed),

and the other correlation patterns are outputs of the model. Hence, the observed relationships between

linear-response constants across conditions can be used to select a specific model. In the following, we

present replication-agnostic theories first, then replication-centric models, then we introduce a class of

models that find a solution of this dichotomy.

The replication-centric models are in line with the classic views on the E. coli cell cycle, but they are chal-

lenged by recent findings [410, 430, 425, 427, 420]. The 1968 Cooper and Helmstetter model was based

only on the available population-average data at that time. The model posits that cell division happens

within a defined period (CD) of time after initiation. Shortly after, Donachie [430] combined the Cooper

andHelmstetter observation of a constant (population average) CD periodwith the even older observation

that population-average cell size increases with the growth rate with a trend that is compatible with an ex-

ponential (Schaechter’s law [407], whichwementioned above) and postulated that the population-average

mass-per-origins is constant with the growth rate. Crucially, the classic paradigm by which replication lim-

its division rested on indirect conclusions based on population averages, but these assumptions needed

to be verified by single-cell data, which showed that things are much more complex [386].

In recent times, Ho and Amir [428] were the first to connect the Cooper-Helmstetter-Donachie ideas with

the new observation of adder correlation patterns over the G-period. The authors assumed an adder
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mechanism during the I-period and a timer mechanism during the CD period. This model produces (in

the limit of small noise in the timing of the CD period) an adder behavior in the G-period. Note that in

this model λI = −0.5 and λCD = 0 are inputs while λG ≈ −0.5 is an output of the model. This model,

by definition, fails in reproducing the adder behavior in the CD period (which was not known at the time).

Although it turned out to be an oversimplification, this work has the merit of connecting the old theories

with new single-cell data into a simple and elegant replication-centric model.

The first studies measuring the initiation of DNA replication in single cells [416, 417] brought two new

experimental pieces of evidence into the field: they observed the duration of the CD period was inversely

proportional to the single-cell growth rate and that the C period does not display any size compensation.

Based on their data, Wallden and coworkers proposed a replication-centric model with a sizer in the B-

period (ζB = −1), which was later falsified [423, 419, 418]. A subsequent study by a different group [419]

measured consecutive initiation events in single cells and observed three adders in theG, I, andCDperiods.

They then designed an improved version of the Ho-Amir model (already proposed for mycobacteria [431])

in which the initiation of DNA replication triggers both the next initiation and a division event with an adder

mechanism. In this model, the adder in the G-period is an output of the model, which emerges from

the adder in I and CD when the growth rate is a random variable and a sufficiently skewed asymmetry

in cell division is added into the model. This replicaiton-centric model is unable to capture the growth

rate – CD period inverse relationship discovered by Wallden and coworkers. However, it has the merit of

improving the Ho and Amir model accounting for both adders in I and CD and introducing a debate over

the importance of asymmetric division.

The replication-agnostic models entered the debate more recently. Based on dynamic cell-wall and cell-

geometry measurements, Harris and Theriot proposed a model in which the completion of the division

septum, and not the chromosome, was the limiting factor for cell division [426, 427]. This model proposes

a simple molecular mechanism for the adder based on three main ingredients: (i) a crucial factor involved

in setting division is produced at a rate proportional to the cell size; (ii) this factor needs to reach a thresh-

old in the number in order the cell to divide; (iii) the factor in the next generation has to be reset, with

no history dependencies on the previous cell cycle (in the case of the septum, this is natural, as a new

septum needs to be produced from zero at every cell cycle). This model structure is still the basis for dif-

ferent mechanistic models explaining the adder during the G period, but the mechanistic factor was also

proposed to be a protein [432, 433, 418]. Further evidence in favor of a replication-agnostic view came

from experiments performed by the Jun lab [418] aiming to perturb independently the adder correlation

pattern in the G-period, while maintaining intact the adder pattern over the I-period, and viceversa. The

perturbationswere achievedby inducing oscillating levels of the FtsZ protein, which forms a contractile ring

structure at the future cell-division site and of the DnaA protein, responsible for the initiation of replica-

tion, respectively. The authors interpreted the results of these experiments as a proof that the replication

and division cycles are independently regulated, and in particular that completion of DNA replication and

segregation is not a limiting factor for cell division. Additionally, the authors re-interpreted the ‘molecular

adder’ model proposed by Harris and Teriot, suggesting that the FtsZ may be the “adder protein” setting

division. This work has the merit of providing precious experimental information. However, the model

fails to explain the adder behavior over the CD period, as well as the correlation patterns related to how

the replication and the division cycles are coordinated [423, 425, 408].

The replication-centric and replication-agnostic views have been firmly opposing each other in recent years

(see e.g. [434, 429, 435]). However, a standpoint that is gaining consensus is that neither of these views

is able to capture the full complexity of the correlation patterns in the data [423, 425, 408, 420, 412, 436].

The recently proposed “concurrent-cycles” scenario [423, 425, 408] bridges the two opposing views and

is in better agreement with the data compared to all the above models. The key innovative element in

this theoretical framework lies in the assumption that there is no unique process limiting cell division.

Rather a set of competing processes have to be completed before division, and some “downstream con-

trol” module (modelled as a logic gate) has to process the input from these processes. In its original formu-

lation [423, 425], based on the available data the competing processes are the DNA replication processes
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defined by an adder in the I-period, a timer in the replication-segregation period cycle, and a cell division

process that adds constant size between two consecutive divisions (division-related cycle). The division

is decided by an AND gate, which triggers when both of two actions are completed, the interdivision pe-

riod is complete and the replication-segregation period is complete. Therefore, the AND gate selects the

slowest of the two random processes (which vary across single cells) to set the timing. Note that in this

framework the CD period can be set by the intrinsic replication-segregation period of this is the slowest

process, or by the interdivision period in case this other process is the slowest one. The concurrent-cycles

framework makes precise predictions on how the sub-periods correlations of size change when either the

replication-related or the division-related cycles are perturbed. Recently, experiments in which cell wall

insertion is delayed confirmed the prediction of the model [408]. Other recent studies proposed similar

frameworks, adding mechanistic details, where the onset of constriction at the divisome [436] and/or a

“progression control complex” including the chromosome and the divisome play the role of the gate de-

ciding cell division [420, 412]. Technically, concurrent cycle models need an additional set of parameters

compared to the replication-centric and agnostic models (see Box 13.D). These parameters are ultimately

summarized by one extra relevant parameter, which can be expressed as the probability that the division-

related process to sets division (in a given cell cycle). Thus, the replication-centric and replication-agnostic

models can be seen as limit cases of the concurrent-cycles framework, where this probability is zero or

one respectively.

Despite the large improvement that the concurrent-cycles framework provides in the agreementwith data,

many questions remain open. For example, we do not know the probability of either of the concurrent

processes limiting division varies under different conditions. Recent surveys of the available data [408,

436] suggest that the probability of a chromosome-agnostic cycle increases with increasing growth rate. At

very slow growth (interdivision times of 300minutes ormore), it has been been suggested that replication-

segregation is the limiting process. Additionally, we currently do not knowwhat tunes such probability and

what the role of the growth rate may be. We also do not know how many concurrent processes there are

and which precisely are the relevant players at the molecular level. Finally, the regulation of initiation of

DNA replication could also be set by a “gate” integrating a set of processes, a hypothesis that remains

underexplored in the literature.

13.5 Protein sectors and cell division

This chapter focuses on quantitative descriptions of the cell cycle and cell division control, and it is natural

to wonder whether and how these consideration relate to the topic of previous Chapters 8 and 9 which

deal with resource allocation models where cell growth is set by catabolism and biosynthesis. There is a

strong link between regulation of growth and cell-cycle progression, which remains a largely open area of

investigation both in biology and in quantitative biology / physics of living systems. This section discusses

some recent models aimed to describe some specific aspects of the coordination between cell growth and

cell-cycle progression. We will start by presenting the main questions that we want to address with the

aid of mathematical models. Then we will discuss the main ideas and ingredients behind the models that

address these questions, and present some relevant predictions that can be tested and validated against

experimental data.

The maintenance of an interplay between cell growth and cell cycle is crucial for the correct functioning

of the cell. Specifically, a cell has to adapt both growth and division rates concertedly when either one is

perturbed. For example, the response and adaptation to environmental stresses, such as sudden shifts

in nutrient conditions or exposure to drugs or toxins, requires the ability to reprogram in a coordinated

way cell growth and cell division. Consequently, cells across all kingdoms of life have developed specific

mechanisms to precisely coordinate cell cycle progression with cell growth and biosynthesis [133, 437,

389, 438, 393, 439]. There are many mechanisms involved in this coordination, and we lack a complete

and coherent quantitative understanding of how this coordination works in different contexts. Sometimes

we even lack simple ways to frame questions concerning the effects on cell cycle progression of cell growth
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Math box 13.D The concurrent-cycles framework

This box provides the mathematical relationships that correspond to the ones appearing in Box 13.C for the more

general concurrent-cycles framework. Given the complexity of this model, we restrict to the case of no overlap-

ping rounds. In particular, we will show how Eq. (13.15) is no longer valid in the concurrent-cycles framework

(without the need to include additional ingredients such as asymmetric division or mother-daughter growth rate

correlations).

In the concurrent-cycles model, cell division is determined by the slowest of two processes. The first process is an

interdivision, (chromosome-agnostic) cycle that is concluded, for generation i, at a log-size qi
H , which is expressed

as qi
H = q∗

H + (1 − λ∗
H)
(

qi
0 −
(

q∗
H − log 2

))
+ ανi

H , with λH size control parameter of this process. The second

process is a chromosome replication-segregation cycle (replication-centric), that is concluded, for generation i,

at a log-size qi
R, which is expressed as qi

R = q∗
R + δqi

I + ανi
I . Note that this equation assumes a timer for this

process, λ∗
CD′ = 0, where CD′ identify the time needed for completing DNA replication, which is identical to

the measurable CD-period only when this second cycle sets division. The cell size at division is determined by the

slowest process, i.e. qi
d = max

(
qi

H , qi
R

)
. The initiation of DNA replication decides the next initiation independently

on the size at birth or division, generating the fluctuation around the logarithmic size at initiation that we already

found in Box 13.C, δqi+1
I = (1 − λ∗

I )δqi
I + ανi

I .

To calculate the fluctuations of the logarithmic size at division, we assume that the replication-centric process sets

the division of generation iwith probability pH independently on qi
0 and qi

I . With this assumption, and considering

λ∗
H , λ∗

I and λ∗
CD′ = 0, the model predicts the following values for the strength of the size-growth plots in the B-,

CD- and G-period,

(1 − λB) = (1 − λCD) (1 − λI)
σ2

qI

σ2
q0

(13.16)

(1 − λCD) = (1 − pH) + pH (1 − λ∗
H) (1 − λB)

σ2
qI

σ2
q0

, (13.17)

(1 − λG) = (1 − pH) (1 − λB) + pH (1 − λ∗
H) (13.18)

Overall, the concurrent-cycles model allows to match the experimental trends in the size-growth plots with an

additional parameter (pH ). In particular, it allows to break the relationship in Eq. (13.15) without including asym-

metric divisions or mother-daughter correlations in growth rates [423, 425, 408].

perturbations/inhibitions, or the effects of cell growth of cell-cycle perturbations (such as cell cycle arrest).

To formulate and address these questions quantitatively, we would need a theoretical framework where

both growthphysiology (as in “howdoes a cell grow?”) and cell-cycle decisions/progression (as in “howdoes

a cell decide when to divide?”) aspects are allowed to play a role and influence each other. However, while

both cell growth and cell cycle progression alone have been subject of intense study in the past (especially

in bacteria [387], but see ref. [440] for a recent review of these themes in eukaryotes), comparatively little

effort has been directed so far toward the development of such unified framework. Nonetheless, recent

work has advanced our quantitative understanding of the cross-talk between cell growth and cell cycle

progression in bacteria. The remainder of this section will focus on discussing these aspects.

Relatively to the bacterium E. coli, recent and current efforts aimed at integrating already existing coarse-

grained models of cell physiology and cell cycle control. More precisely, several studies have extended

the classic proteome allocation theory, (presented in chapters 8 and 9), which has proven successful in

describing several physiological laws, to include also a cell-division proteome sector “X”, whose dynamics

should implement cell-division control (or cell-cycle progression control) strategies at a phenomenological

or molecular level (Fig. 13.4). The current models for E. coli usually include a threshold accumulation pro-

cess for cell division, i.e., proteins of the division sector accumulate during cell cycle progression up to a

threshold level that triggers cell division. The previous section has mentioned some candidate molecular

players for this accumulation (the FtsZ protein and the cell wall insertion).

Let us take a closer look at the ingredients of thismodeling framework. The twomain ingredients are (i) the

standard proteome allocation theory extended to include a division sector X , alongside to the standard
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Math box 13.E A mathematical model

The model consists of two different layers of dynamical equations, and one relationship connecting them. The

first set of equations describes cell growth and division as cellular processes

ds

dt
= λs ,

dX

dt
= kXs −

dX

mX
X, X(τd) = Xth =⇒

{
s(τd) → s(τd)/2

X(τd) → 0
, (13.19)

where cell size s (mass or volume) grows exponentially at a rate λ ([λ] = [T ]−1), while division proteins X , of mass

mX being synthesized and degraded at rates (kX ([kX ] = [s]−1[T ]−1), dX([dX ] = [M ][T ]−1)), accumulate until

a threshold amount of them is reached and cell division occurs, after that cell size is divided exactly in half and

division proteins number is reset to zero.

The second set of equations describes the dynamical allocation of the proteome and the biosynthesis layer un-

derlying cell growth, as follows

dA

dt
=

1
ma

knP − aktRfa +
∑

Pi∈{Q,P,R,X}

dPi
Pi

 ,

dPi

dt
=

1
mPi

(
aktfPi

Rfa − dPi
Pi

)
. Pi ∈ {Q, P, R, X} .

(13.20)

According to Eq. (13.20), free amino-acids (A) are produced from import/catalysis of nutrients at a rate kn ([kn] =
[M ][T ]−1)) per number of catabolic/transport proteins P , and from protein degradation, occurring at a rate dPi

Pi

(where dPi
([dPi

] = [M ][T ]−1) is the degradation rate) for each specific sector. Free amino-acids are taken up to

synthesise each proteome sector Pi at a rate equal to the number of active ribosomes (Rfa), times the fraction

of ribosomes synthesising the specific sector fPi
, times an overall protein translation rate, which in this particular

model is equal to a constant translation rate per ribosomes kt ([kt] = [s][T ]−1) times the concentration of free

amino-acids a ≡ (maA)/ ([a] = [M ][s]−1).
Finally, there must be a connection between the two levels of description, in the sense that cellular rates should

be regarded as the result of the underlying biosynthesis dynamics. To make this connection explicit, we write the

equation

s = γM = γ(mAA + mP P + mRR + mQQ + mXX) , (13.21)

representing mass conservation (if ”size” stands for ”mass” s = M ), or the assumption of constant density (if

”size” stands for ”volume” s = V ), verified in E. coli for population averages but not for single cells, or for certain

perturbations [390, 445].

Together, Eqs. (13.19), (13.20) and (13.21) fully specify the model.

main sectors (see Chapter 8), Q (house-keeping), R (ribosomes), P (catabolism and transport), together

with (ii) a threshold-accumulation division strategy to set the decision to divide (Fig.13.4A). Note that the

fact that the division factorX is a protein is an implicit assumption in these framework and experimentally

things could be more complex. Crucially, the fact that cell division is a proteome sector couples the rates

of cellular growth and division, by controlling the synthesis of division proteins. Specifically, the models

encode a trade-off between ribosomes and division protein synthesis, which as we will see determines

many salient predictions.

Box 13.E shows how these ideas and ingredients can be translated into amathematical model. The frame-

work that we are now going to discuss is consistent with different models recently developed in the liter-

ature [441, 442, 443, 444, 438].

In order to exemplify how this framework can generate relevant predictions, we dedicated an appendix

”Growth Laws” at the end of this document where some concrete examples taken from the literature are

discussed. The mathematical derivations are not exhaustive, but aimed to give the reader a feeling of the

”recipe” followed to obtain a given prediction starting from the model’s ingredients. The interested reader

should have sufficient information to work out the mathematical calculations autonomously or follow the

complete derivation in the cited references (for example by Serbanescu et al. [441, 442]).
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Figure 13.4: Ingredients and predictions of modeling frameworks integrating sector models with cell-
division control – (A) The framework unifies growth and cell division by extending the standard proteome
allocationmodel to include a division sector X, implementing a threshold-accumulation process setting the
decision to divide. (B) The model is naturally suited to uncover general relationships and growth laws in-
volving proteome composition and growth rate, as well as trade-offs between different proteome sectors.
The inclusion of a division protein sector X regulating cell division allows the model to make predictions
on cell size control and study the transient dynamics in nutrient shifts.

13.6 Control of cell division across species and kingdoms

The concepts described in the previous sections arewidely applicable, but there aremany relevant species-

specific aspects, so that different crucial assumptions that we have taken so far might break down for dif-

ferent species and kingdoms. Additionally, it should be noted that the approach described here is purely

phenomenological, while a biological investigationmight be concernedwith the detailedmolecular players

responsible for the cell division and cell-cycle progression decisions. Even in this case, the approach is

useful and is being applied in recent work. For example, if the goal is to understand how the size control

phenomenon is regulated, the phenomenological analyses can quantify how the phenomenology of size

correction behaves under different mutants and perturbations, helping to identify molecular players and

their effects on cell-cycle decisions.

Let us consider briefly some important variations of the approach used so far, relevant for the under-

standing of different species-specific behaviors. First, it is not granted that single cells grow exponentially,

or even that exponential growth is a good approximate description. Even in the cases where exponen-

tial growth appears to be a good average description, these averages may emerge from more complex

behaviors at the single-cell level or in cell cycle sub-periods. For bacteria, most studies conclude that ex-

ponential growth is a sufficiently good description, although recent accounts show deviations [446, 447].

In budding yeast (S. cerevisiae), the average growth rate was reported to change at regulatory checkpoints

with the cell-cycle phase [448, 449, 450]. In the fission yeast S. pombe, a systematic study of single-cell

growth concludes that the majority of growth trajectories are best described by a bi-linear growth [451].

In cell lines of animal cells, most studies suggest that, on average, cells grow exponentially until a certain

saturation size after which they slow down, but this mean behavior hidesmany details [389]. For example,

it seems that cells in the G1 phase of the cell cycle grow at a slightly slower rate than in later stages of the

cell cycle [452].

A second important aspect to consider is whether division is symmetric or not. In E. coli, cells divide sym-

metrically, giving rise to two daughter cells that are nearly equal in size, with a precision of a few per-

cent [392]. However, different species use very different strategies for cell division, which increase vari-

ability or explicitly aim for asymmetry. For example, S. cerevisiae reproduces through budding (hence the

term “budding yeast”). The parent cell creates a small outgrowth that eventually becomes a daughter

cell. Both division strategies are common among unicellular organisms (many filamentous fungi grow via
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budding). Budding creates a parent/offspring distinction in which age-related aspects are not transmitted

equally. Since aging may correspond to a decrease in fitness/growth rate, it can also create diversity along

lineages. A third important aspect to consider is that the growth rate may be coupled to size and enforce

size homeostasis. In other words, homeostasis can be achieved by modulating cell-cycle duration based

on size at birth, but also if large-born cells grow slower than small-born ones.

As an example of how different issues can be analyzed with extensions of the phenomenological ap-

proaches discussed so far, it is instructive to discuss in more detail how one can use the linear-response

framework to detect indications of growth-based size homeostasis. As wementioned previously, the over-

all multiplicative growth of a cell in one cycle is quantified by G = qf − q0 = log sf

s0
=: ατ . The slope λ of

the size-growth plot is equivalent to considering the conditional average of G over logarithmic size q,

〈G〉q = 〈G〉 − λδq (13.22)

As we have seen in Fig 13.1, we can consider the separate contributions of timing and growth to the cou-

pling by taking separate scatter plots with growth rate and cell division time. We can give a more formal

quantification of their contributions as follows. We call θ the coupling strength derived from the slope the

first plot quantifying control by modulation of interdivision time,

〈τ〉q = 〈τ〉 − 〈τ〉θδq , (13.23)

and γ the slope quantifying modulation of growth rate based on birth size,

α− 〈α〉 = −〈α〉 (γδq) + να . (13.24)

For positive values of γ, cells that are born larger than average can correct their sizes by growing with a

slower growth rate, and cells that are born with a smaller size than average can correct by growing at a

faster rate. Conversely, for negative values of γ, birth-size related specific growth rate variations increases

systematically size variability.

Intuitively, we can understand that θ γ and λmust be related. First, the overall homeostasis must be the

result of the one enforced by growth-rate modulation and the one enforced by interdivision-time mod-

ulation. More formally, the slopes of the correlation plots illustrated in Fig. 13.1 for G, α and τ versus

logarithmic birth size must be related, because G = ατ .

Using the linear response approach defined in section 13.3, one can derive the following equation

λ = θ〈α〉〈τ〉 + γ〈α〉〈τ〉 . (13.25)

Eq. (13.25) states that the overall correction to size over a cell cycle has to be the sum of a correction due

to modulation of timing and a correction due to the modulation of specific growth rate based on size at

birth. For example, if the overall strength is an adder, and the size coupling of the duration of the cell cycle

is already an adder, the growth rate must be uncoupled from initial size.

Going back to the data, one can use Eq. (13.25) to evaluate the different strategies, by evaluating the cou-

plings θ, γ and λ from the different scatter plots. Importantly, the constraint imposed by Eq. (13.25) is

realized in data from several bacterial species and growth conditions, indicating that the framework is suf-

ficient to describe the data. Work on different bacteria shows widespread adder correlations [387], hence

λ ' 0.5. What is more surprising is that adder behavior has been reported for in budding yeast and cul-

tured human cells. Hence, for many species, the inter-division correlation patterns are nearly always close

to an adder. One interesting exception is the fission yeast S. pombe, discussed below. The widespread

adder patterns may suggest common general principles underlying the division control of microorgan-

isms and cultured single mammalian cells. Considering the couplings θ, γ shows a different scenario, with

a clear distinction between microorganisms and cultured mammalian cells. In the studied unicellular mi-

crobes, the inter-division adder is always due to the modulation of cell-cycle duration. Instead, cultured
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mammalian cells also rely on growth rate modulation to correct their size. In particular, this rejects the

hypothesis that adder behavior may be favored by common underlying mechanisms. Additionally, for

budding yeast and mammalian cells, the overall adder behavior emerges from homeostatic regulations

acting close to the initiation of replication (G1/S transition) during the cell cycle, and from a weaker reg-

ulation of the subsequent parts of the cell cycle [389]. Cell growth outside of G1 is critical in setting the

average cell size but appears to be less significant for the size homeostasis effect setting cell-to-cell vari-

ability in birth size. This is not the case in bacteria, where we have seen that key questions regarding the

specific events in the cell cycle where homeostasis is exerted are still under debate.

The fission yeast S. pombe is an interesting case to discuss. This rapidly dividing microorganism is a yeast

but uses symmetric division (hence it is sometimes called “fission yeast”), andwas the centralmodel system

in pioneering studies of the cell cycle. Its size-correction mechanism is the strongest observed in nature,

because it can correct size fluctuations in a single cell cycle. Its inter-division size pattern is close to a sizer,

but recently the study of mutants with different cell widths has shown that the mechanism that triggers

division is based on a surface-area sensor, triggered at a critical cell surface. The molecular effector of

this sensing, a protein called Cdr2, has been indentified [453]. Curiously, genetic knockout of this protein

does not lead to an ablation of size homeostasis. Rather, fission yeast cells fall back to a volume-based

mechanism, suggesting that multiple biochemical circuits play a role in the decision to divide.

Finally, since cells of different species and in different conditions use a range of ways to control cell division,

for example sizers or adders. An important question is why a particular species would implement one

particular strategy. One possibility is that this trait is under selection, and the fitness of individual cells

decreases away from the optimal size. In this case sizers would be favored, because they can compensate

for deviations in one cell cycle and minimize fluctuations. A second, more likely, possibility is that intrinsic

physiological constraints linking cell cycle and growth are important in determining cell division control.

For example, it has been argued that in bacteria size control is a result of a cell’s attempt to exert a tight

control over the initiation of DNA replication – rather than cell division [454].

13.7 Concluding remarks

This chapter focused on modeling the cell cycle. The reader should have acquired an overview of some

of the key recent experimental results in this area, as well as the basic mathematical toolbox to address

biological questions motivated by single-cell dynamic data, concerning (i) decisional processes during the

cell cycle and primarily the decision to divide, (ii) coordination between different cell-cycle processes, and

primarily the chromosome cycle with cell division and (iii) the coordination of cell cycle progression with

growth.

This chapter is connected with Chapters 8 and 9 describing resource allocation models used here to de-

scribe growth, and with Chapter 11, describing models of growth rate variability, because it provides a

framework to include a description of the division rate variability.

Problems

Problem 13.1

Show that for cells that grow linearly in time an adder and a timer are the same.

Problem 13.2

Analyze the consequences of a constant per-size hazard rate h∗
d = 1/s̃ and compare them to the conse-

quence of a constant per-time hd = r (a Poisson process).

Problem 13.3

Analyze the forward hazard rate model for cell division where hd(s) = (s/s̃2) by simulation and/or ana-

lytical calculations.
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Problem 13.4

Find the hazard rate corresponding to the process defined by Eq. (C.2).

Problem 13.5

Write an explicit expression of the four parameters λab appearing in Eq. (C.5) and Eq. (C.4) as a func-

tion of the covariances between the fluctuations of growth rates and log-size at the same or different

generations.

Problem 13.6

Prove that the adder strategy rapidly achieves cell size homeostasis (that is, a controlled cell size at

birth) after a few cell generations, independently of the starting initial size. Prove that convergence to

homeostasis and loss of memory of the initial cell size is exponential in the number of cell cycles. Write

down a simple numerical code to simulate this process and verify your analytical predictions. What is

the role of noise in setting the inter-division added size?

Problem 13.7

Write the equivalent of Eq. (C.2) for the I-period and for sub-periods B and CD, and prove the following

relationships:

(1 − λI) =
〈
δqi+1

I δqi
I

〉
σ2

qI

, (1 − λB) =
〈
δqi

Iδq
i
0
〉

σ2
q0

, (1 − λCD) =
〈
δqi+1

0 δqi
I

〉
σ2

qI

,

where the log-size fluctuation at initiation for the cell cycle i is δqi
I := qi

I − 〈qI〉 ≈ log
(
si

I/ 〈sI〉
)
, with si

I

the cell size at initiation.

Problem 13.8

Write the equivalent of Eq. (13.12) for the I-period and for sub-periods B and CD.

Problem 13.9

Write the predicted λG and λI for a model in which λ∗
CD and λ∗

B are input parameters of the model.

Does Eq. (13.15) still hold?

Problem 13.10

Extend the models in Box 13.C for:

1. Overlapping rounds of DNA replication. This case is more difficult to address analytically, but can be

easily simulated.

2. The ζ-formalism (without overlapping rounds). Use the model to answer the question: can an adder

in the I- and CD-period provide the adder behavior in the G-period4?

Problem 13.11

Run numerical simulations of Eqs. (13.19). Prove that in order to obtain an adder, the ingredients of a

size-specific (rather than constant) production rate of the division protein kX and a reset to zero (rather

than partitioning in half in the two daughter cells) of the division factor X turn out to be essential.

Problem 13.12

Rewrite the system of equations (13.20) in terms of protein fractions, either defined as protein mass

fractions φi ≡ Mi/Mprot or protein number fraction ψi ≡ Pi/
∑

i
Pi, where Mprot = mQQ + MPP +

mRR + mXX = M − mAA. In both cases one has the obvious constraint
∑

ψi = 1 =
∑

i
φi. Find

the connection between ψi and φi. What can be generally said about the stationary composition of the

proteome? How does the senario change if degradation can be neglected?

4Note that the adder behavior can be recovered introducing asymmetric divisions [419]
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Problem 13.13

For the mathematically curious readers, show that the model described in Box 13.E far can be written

in more general mathematical terms as

dXi

dt
= fi(X); dZ

dt
= h(X, Z)

V (X, Z) =
N∑

i=1

viXi + vZZ
(13.26)

where V is the volume of the cell and Xi, Z its chemical constituents. Identify the functions fis and h.

Show that the fis satisfy the property of homogeneity, fi(βX) = βfi(X). The predictions of this model

have been studied in the wider framework of dynamical systems theory [455, 456].

Problem 13.14

By directly integrating Eq. (13.19), derive the following expression for the threshold number of division

proteins Xth ≡ X(τd)

X(t) = kXs0

λ+ dX
mX

(
2

t
τd − 2− dX

mX λ
t

τd

)
=⇒ Xth = kX

λ+ dX
mX

(
sd − s02− dX

mX λ

)
. (13.27)

Recommended readings

◦ Osella M, Tans SJ, Cosentino Lagomarsino M. Step by Step, Cell by Cell: Quantification of the Bacterial

Cell Cycle. Trends Microbiol. 2017 Apr;25(4):250-256. doi: 10.1016/j.tim.2016.12.005.

◦ Willis L, Huang KC. Sizing up the bacterial cell cycle. Nat Rev Microbiol. 2017 Oct;15(10):606-620. doi:

10.1038/nrmicro.2017.79.

◦ Cadart, C., Venkova, L., Recho, P. et al. The physics of cell-size regulation across timescales. Nat. Phys.

15, 993–1004 (2019).

◦ Jun S, Si F, Pugatch R, Scott M. Fundamental principles in bacterial physiology-history, recent progress,

and the future with focus on cell size control: a review. Rep Prog Phys. 2018 May;81(5):056601. doi:

10.1088/1361-6633/aaa628.

◦ Serbanescu D, Ojkic N, Banerjee S. Cellular resource allocation strategies for cell size and shape control

in bacteria. FEBS J. 2021 Oct 19. doi: 10.1111/febs.16234.

◦ Amir A, Männik J, Woldringh CL, Zaritsky A. Editorial: The Bacterial Cell: Coupling between Growth,

Nucleoid Replication, Cell Division, and Shape Volume 2. Front Microbiol. 2019 Sep 4;10:2056. doi:

10.3389/fmicb.2019.02056.

◦ Kleckner NE, Chatzi K, White MA, Fisher JK, Stouf M. Coordination of Growth, Chromosome Replica-

tion/Segregation, andCell Division in E. coli. FrontMicrobiol. 2018 Jul 9;9:1469. doi: 10.3389/fmicb.2018.01469.



Chapter 14

Economy of organ form and function

Christophe Goupil, Éric Herbert, Cyril Karamaoun, Benjamin Mauroy, Frédérique Noël, and Paul Ross

Chapter overview

◦ This chapter extends the concept of economy that previous chapters have elaborated by consider-

ing its application to the organ and the living organisms.

◦ The development of organs in pluricellular living organisms is conditioned by a number of factors

such as nutrients, energy, and form that are here considered in the context of the economy of the

organ function

◦ The mammalian respiratory system is subject to a high degree of constraint, primarily energetic

and morphometric in nature, that played a decisive role in shaping the lung through evolutionary

processes.

◦ The lung is the organ that is most directly responsible for respiration, a process that involves con-

necting the external environment to the cellular compartment through the ventilation.

◦ We show that the constraints on this major organ imply a high level of complexity of the organ’s

shape and a precise control of the ventilation.

◦ The scaling laws that govern the development and function of lung and are common to the en-

tire mammalian class condition the lung’s growth and determine its shape have been treated in

previous works

◦ Through several examples, we demonstrate how these scaling i.e., allometric laws control the ven-

tilation, and the respiratory processes in general.

14.1 Optimization of organs and systems

In the previous chapters, the central model of the cell has been deeply explored. On another scale, the

integration of cells into larger structures such as tissues, organs, and entire systems inmulticellular organ-

isms requires an extension of the main concepts presented in this book. Nevertheless, the completion of

the multiple functions of an organ follows the same general principles as for individual cells, including the

economic aspects.

14.1.1 Organs and constraints

The way that a cell population aggregates itself into a high-level structure, as part of a pluricellular organ-

ism, has been determined through evolutionary processes, following amore general path of specialization

of structures and functions. Each organ evolved to fulfill its functions in the most optimized manner. This

observation leads us to interrogate the concept of optimization for such a large structure – from a cellular

227



228 Economy of organ form and function

point of view. In the context of organ function, optimization can be defined through the processes by

which the functions are fulfilled as best as possible while minimizing the associated cost variables. Among

those variables, energy plays a central role. Thus, one possibility for constraining the organ would be to

maintain its function at an optimal level while minimizing its cost in energy. This effect can be expressed

mathematically. Let us define the cost in energy E which depends on one or more variables x ∈ Rn (n > 1).
Furthermore, let us define one or more equality constraints to our problem, c(x) = 0, where c : Rn → Rm.

The optimization problem under constraints comes down to finding an optimal value for x that minimizes

the function E(x) while x satisfies c(x) = 0. This results in

min
x∈Rn

E(x), such that c(x) = 0. (14.1)

The optimization under constraint problem can be solved using the Lagrangian function,

L(x, λ) = E(x) −
m∑

k=1

λkck(x),

where the λk are Lagrange multipliers. Indeed, if we assume that x∗ is the optimal solution to the prob-

lem (14.1), then thanks to the Lagrange multiplier theorem, there exists a unique Lagrange multiplier λ∗

such that,

∇E(x∗) = λT
∗ Jc(x∗),

where Jc is the Jacobian of the function c. It implies that the optimal solution x∗ is a stationary point ofL,

satisfying the condition of minimal energy expenditure.

A study of the constraints on the cardiac system offers an excellent example of energy optimization, due

to high consumption of the heart. The cardiac pump delivers deoxygenated blood to the lung through

pulmonary circulation and brings oxygenated blood to the whole body through systemic circulation [457].

Interestingly, blood pressure developed in both ventricles are not of the same order of magnitude, with a

left ventricular pressure approximately ten times larger than the right ventricular one [457]. This makes

sense froman energetic point of view; the heart requires a non-negligible amount of energy to fulfill its role

of blood pumping. Furthermore, as with any mechanical system, only a fraction of the energy consumed

(mainly in the form of ATP) is converted in mechanical work – around 25% [458], the rest being dissipated

as heat. Thus, the pumping work tends to be optimized from an energy consumption point of view. On

one hand, the pressure needed to irrigate the pulmonary circulation is low; the lung presents a small

value of resistance to perfusion, and its apex is located only centimeters above the heart position. And

on the other hand, the pressure developed in the systemic circulation must allow the oxygenated blood

to irrigate all the organs, including high-energy consumers – muscles, brain – that located further above

heart position, developing a hydrostatic pressure that the blood flow has to overcome [457]. It is to be

noted that this energetic optimization is also connected to the metabolism requirements, with a pumping

work closely related to the body’s O2 consumption, which ensures an optimized adaptation of the cardiac

output to the body energy requirements.

Although often considered as a major aspect, this energetic constraint is far from being the only condition

for a proper functioning of the organ. Other variables such as nutrient consumption, metabolic integra-

tion or physical constraints participate in shaping the organ function. Brain development in primates, and

humans especially, is a prime example of effect that combination of several constraints has on energetic

and nutrients availability. The underlying mechanisms that determine the evolution towards a large and

complex brain structure in humans are still debated [459]. However, it is evident that the development

and normal function of this organ is dependent on adequate and specific energetic and nutrients inputs.

From the energetic point of view, brain metabolism largely depends on glucose consumption. However,

in case of high consumption and/or deprivation, ketones metabolism takes place in order to furnish a fast

and rich source of energy for the organ. Ketones are catabolizedmainly in the liver [460], and have the im-

portant property of being able to cross the blood-brain barrier, to the contrary of long chains of saturated

fatty acids [461]. In parallel, proper brain development and function require a large input of specific nutri-
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ents that are not common in every food source [462]. Among those, iodineand ironappear to be essential

for the brain, and exert a strong constraint on its adequate growth and functioning. The notable presence

of iodine-enriched food sources close to the sea shores, compared to traditional terrestrial food sources,

is thought to have favored the recent development of the so-called shore-based paradigm of human brain

evolution i.e., that the access to seafood produce supported and enhanced brain development in early

hominid populations, leading to increased brain mass and cognitive functions in those populations [462].

Among these considerations, let us remind that any organ has to develop and function in specific localiza-

tion and body environment. Thus, the constraints applied to an organ and its development and function

can also be of morphometric nature.

14.1.2 Energy conversion in living systems

When energy is transferred to a system, its responsemanifests itself at themicroscopic level by the excita-

tion of its individual degrees of freedom, and at the global level when collective excitations are possible. In

generic terms, a thermodynamic machine is defined as a system where an incident energy flow dispersed

is converted into an energy flow aggregated and a loss flow. This conversion is performed by a thermody-

namicworking fluidwhich, carrying entropy, leads to a coupling between the respective potentials through

the equations of state.

In the case of thermal machines, the dispersed form of energy is called heat and its associated poten-

tial is temperature, while the aggregated form is called work and its associated potential is, for example,

pressure. Temperature and pressure are linked by one or more equations of state. The system response

results from the collective response of the microscopic degrees of freedom of the working fluid. Thus,

part of the energy received by the working fluid can be made available to a load on a global, and possibly

macroscopic, scale for a given purpose as useful work, the remainder being redistributed (dispersed) at

the microscopic level and dissipated due to internal friction and any other dispersion processes imposed

by the boundary conditions [463]. Conversion efficiency is therefore closely related to the proportion of

energy allocated to the system’s collective modes.

Living organisms are open, out-of-equilibrium and dissipative systems, as they continuously exchange

energy and matter with their environment [464]. Unlike classical thermodynamic engines, for which equi-

libriummodels can be constructed using extremal principles, such a possibility does not exist in the case of

living organisms due to the absence of truly identifiable equilibrium states and the absence of principle for

non-equilibrium systems. Nevertheless, assuming a global system close to equilibrium, the development

of a tractable thermodynamic model of metabolism can be based on notions from classical equilibrium

thermodynamics. In this approach, the working fluid acts as a conversion medium, characterized by its

thermoelastic properties, or chemicoelastic coefficient for chemical systems.

14.1.3 The example of the lung

As an example of an organ submitted to geometric limitations, the lung has to face, from its early develop-

ment to its mature state, multiple constraints on its morphometry and proper functioning. The principal

role of this organ is, as well known, to establish the connection between the respiratory gases in the at-

mosphere and these in circulation in the body i.e., O2 as a reactive agent, and CO2 as a by-product that

has to be eliminated from the organism. To fulfill its role, the lung has evolved in a manner that maxi-

mizes the gas exchange surface – as diffusion is a surface phenomenon – in a reduced thoracic volume.

This surface-to-volume requirement has forged the lung structure has it is known; an intricate dichotomic

bronchial tree that conducts the air inwards and outwards, to and from the alveolar sacs, respectively.

This semi-fractal, space-filling structure, presents the advantages of an extremely wide exchange surface

enclosed in a relatively small volume [457].

The mechanisms of development of the lung branching structure in a closed environment is still a de-

bated question [465]. Indeed, the tree structure presents a series of specific characteristics necessary for

a proper functioning of the organ. Among these, the space-filling aspect of the bronchial tree is remark-
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Figure 14.1: Proposed mechanism for the morphogenesis of biological branched structures – In this ap-
proach, the gradient of concentration of a key molecular activator guides the growth of specific tissue
layer through the activation of the associated receptor. In this example, the local gradient of concentra-
tion of FGF10 (black arrows) activates the budding of the epithelium layer (branching mechanism – left). As
the tissue curvature flattens, the local concentration vanishes and the growth stops, preventing the tissue
overlap (avoiding mechanism – right) [465].

able, as it solves the problem of the surface-to-volume constraint of the organ. In addition, the whole

bronchial tree is a self-avoiding structure, as no bronchus enters in contact with other ones in its local en-

vironment, which ensures a proper circulation of the air in the structure. It is striking that these properties,

which can be found in fractal geometries, are observed in any well-functioning lung structure, leading to

important developmental questionings. For example, the pattern of branching of the bronchi, although

strongly stereotyped in the first generations starting from the trachea, appears to follow a space-filling

procedural development rather than a deterministic branching pattern [465]. Accordingly, some authors

have developed a set of hypotheses that tend to explain these mechanisms. A group of restricted genes

would encode the steps of branching and growth of the bronchi during the organ development, ensuring

a proper structure of the adult lung,following procedural steps somehow encoded in genes or groups of

genes coding for periodicity, bifurcating and rotating routines. However, to the best of our knowledge,

these genes have not been determined nor a proper molecular mechanism of stereotypical branching.

Among the questions raised by the programmed morphogenesis approach, the link between the molecu-

lar dimensions and the organ world are still elusive. Another path for branching procedure, which could

reconcile the deterministic point of view with the problem of the transfer of information along different

orders of magnitude is the self-organized morphogenesis approach. Several authors [465, 466] suggested

that the branching routine of the bronchial tree is less stereotyped than thought, especially in the cen-

tral and distal generations. This hypothesis is supported by the observation that modeling approaches

using stochastic space-filling routines, constructed based on a stereotyped proximal tree, are capable of

generating tri-dimensional branched structures that satisfy the constraints of a morphometric adult lung.

On another side, the core concept of the self-organized morphogenesis approach relies on the observa-

tion that key molecular components are necessary and sufficient for proper growth and branching of the

bronchial epithelium. Among these, the fibroblast growth factor 10 encoded by the fgf10 gene has been

demonstrated to play a central role in epithelial proliferation, whose activity is highly regulated [465].

In 2012, Clément et al. [465] proposed a scenario for the spontaneous emergence of a tree structure.

This scenario is based on the sole diffusion of a protein promoting cell proliferation, such as FGF10, in an

environment with two layers that mimic the bronchial epithelium and the lung mesothelium.In addition,

the layers present a resistance to folding and are growing as a function of the received flowof proteins.This

scenario forms amodel for the lung development and has been studied usingmathematical and numerical

tools. To mimic the diffusion process from the outer layer of the organ (mesothelium) to the inner layer
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(bronchial epithelium), Clément et al. solved the Laplace equation applied on the protein concentration c:

4c = 0

Then, they considered that each layer was growing according to a function of the local protein gradient:

dx
dt

= fm (||∇c(x)||) for x in the mesothelium
dx
dt

= fe (||∇c(x)||) for x in the bronchial epithelium

The functions fm and fe are increasing functions, typically with a sigmoid shape. To avoid the epithelium

to catch up with the mesothelium, fe is kept smaller than fm. A smoothing of the layers based on a fixed

characteristic size is then performed in order to mimic the layers resistance to folding. With this model,

Clément et al. observed the spontaneous formation of branching patterns similar to those observed dur-

ing bronchial development, as depicted in Figure 14.1 and, based on an extended model, in Figure 14.2.

Hence, this compact modeling approach is sufficient for observing de novo branching and growth patterns

in a simulated tissular environment. Since then, this self-organized morphogenesis approach has been used

as a framework for other organs [467] and other branched systems [468]. To date, the question of the

mechanisms of development of branching organs is not clearly elucidated. However, the link between the

molecular and cellular components requires further investigation, in order to unveil the determinants at

the scale of the tissues and organs.

Philosophical remark 14.A The origin of shape?

How growth and organ specialization define the shape and structure of amature organ is a long-debated scientific

question that has not yet unveiled all its secrets and mysteries. Organs are rarely functional during development,

at least not in the early stages. Thus, the function of an organ cannot directly drive its growth and ultimately its

mature shape. So how can development build an organ that, when mature, has the correct shape and function?

Evolution is the answer: if development fails to achieve a functional, efficient organ, the associated organism has

little chance of being selected by evolution. But this answer raises many other questions. What is the evolutionary

cost of organogenesis? What about the biological path selected by evolution for growing an organ? Is it so robust

that once such a path has been selected, it renders all other paths inaccessible? Do these paths and costs form

bottlenecks for the organs in terms of possible shapes, functions, and functional efficiencies? Insights into these

questions will be given in Section 14.3.

However, these examples of constrained organ development raises several issues that need to be dis-

cussed in details. Among these, one can notice that the shape of the system appears as central in the

developmental considerations, especially under constraints.

In the next section, the respiratory system, and the lung as its central organ, will be studied in details in

light of the concepts of organ optimization. Indeed, the lung, its structure, its functioning, its efficiency,

are all the result of a series of optimization under constraints that shaped the organ through evolution.

14.2 The lung as a model organ for optimization under con-

straints

At the core of the respiration process, the lung is the organ that connects the ambient air to the blood,

allowing to transport oxygen from the ambient air to blood and carbon dioxide from blood to the am-

bient air. The needs of the body in oxygen and carbon dioxide, the respiratory gases, determines the

lung function, which is based on a complex geometrical structure and on several physical and chemical

processes.
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Figure 14.2: Tridimensional spontaneous emergence of a tree (budding) based on the model of Clément
et al. (2014) [469] – An eighth of the budded sphere has been sliced out to show the branching core
(blue). Notice the self-avoiding and space-filling branching, which are commonly found in biological tree
structures.

14.2.1 Lung morphology, a complex structure

A basic description of the lung structure would consist in dividing it in two parts: the bronchial tree and

the exchange surface with blood. The function of the bronchial tree is limited to the transport of the

respiratory gases and no exchange occurs in this part of the lung. It forms a cascade of bifurcating airways

with cylindrical shapes. There is an average of seventeen successive bifurcations in the human lung. The

trunk of the tree is called the trachea; it is connected to the ambient air through the tracheo-pharyngeal

pathway. The leaves of the tree are called the terminal bronchioles; they are connected to the exchange

surface with blood. At each bifurcation the size of the airways is decreasing, with a tracheal diameter of

about 2 cm and a diameter of the terminal bronchioles of about 0.3 to 0.5 mm. The exchange surface with

blood consists in a foam-like structure that is an assembly of exchange units called the acini. Each acinus is

also shaped as a bifurcating airway tree, but the size of the airways is conserved at the bifurcations. There

is an average of six successive bifurcations in a typical acinus. The acinar airways are called the alveolar

ducts and their walls are garnished with bubble-like structures, the alveoli. The alveoli walls are mainly

blood capillaries, called pulmonary capillaries, and they are the location of the respiratory gas exchanges.

Each terminal airway of the bronchial tree feeds an average of two acini. The auto-similar, multi-scaled

structure of the bronchial tree and of the acini allows the lung to contain a very large exchange surface

that is folded in the thorax. In a typical human, the exchange surface is about 70-100 m2 [457].

Since the morphology of the lung is complex, it becomes necessary to make assumptions in order to have

a simple model while conserving the principal geometrical properties. Our model is then based on the

assembly of self-similar trees with cylindrical branches and symmetric bifurcations that mimic the two

functional zones (see Figure 14.3). To account for the core geometrical properties of the lung, we assume

that the dimensions of the branches in the conductive tree decreases from one generation to the next

with a ratio h =
(

1
2

) 1
3 [477], while in the acinus we assume that the size of the bronchi remains constant

[477]. Note that the airways spatial distribution such as the branching angles or the orientations of the

branching planes is not taken into account in our model since it is not really relevant for the computation

of oxygen transport in the lung.

14.2.2 Lung dynamics: where physics enters the play

The transport of the respiratory gases to and from blood involves a combination of physical processes

which ensure that the needs of the body in respiratory gases are fulfilled.
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Physics box 14.B Energy conversion in muscles

Despite the complexity of biological systems, it is possible to apply the Onsager’s phenomenological approach of

locally linearized non-equilibrium thermodynamics Onsager [470]. Through this approach, it is possible to identify

the non-equilibrium processes that link the degradation of the chemical potential of food by its digestion into a

macroscopic form of energy made available for muscular work. By applying Onsager’s approach and integrating

it with macroscopic systems, we can describe the behavior of certain thermodynamic conversion machines under

mixed boundary conditions [463, 471, 472]. In the case of Dirichlet boundary conditions the system is driven

by the potential differences, meanwhile in Neumann boundary conditions the system is driven by the fluxes.

Mixed conditions are located between these two extreme configurations. These lead to feedback effects and the

emergence of complex dynamic behaviors [473].
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(A) Illustration of muscle as an energy converter. The incoming energy flow Φ+ is converted into

mechanical power P = FMIM and a waste fraction Φ−. IM is the so-called metabolic intensity. (B)

Plot of the system’s response under varying metabolic intensities IM . The response extends from

the basal resting point to the point of exhaustion, via the point of maximum work production.

If we apply this description to the case of living organisms that have been reduced to chemical conversion ma-

chines, we obtain a thermodynamic formalism (see Figure above) that regains the phenomenological description

of the muscular response proposed by Hill [474, 475]. In Hill’s phenomenology, the metabolic force FM and the

contracting velocity v are linked by three constants represented by the equation FM = c
v+b

− a. The thermody-

namic formulation gives FM = Fiso+Rfb

IM +IT
IT −

(
RfbIT + RM IM

)
where IM ∝ v. The thermodynamic approach

gives us access to the physical meaning of the parameters i.e., Fiso is the isometric force of the muscle, IT de-

fines the threshold of acceptable metabolic intensity, RM is the viscous resistance to displacement and Rfb the

feedback resistance induced by the mixed conditions previously mentioned .

A proxy for the flow released by the muscle is the quantity of oxygen breathed in during ventilation [476]. To

achieve an effort of a given intensity, the level of O2 adjusts accordingly. Naturally, this quantity cannot grow

indefinitely, and is limited by the absolute size of the organ that enables this exchange and by the relative size of

this organ compared to the size of the individual.

For an individual, this is an intrinsic limitation on the ability to produce effort. So, depending on the size of the

individual, which constrains its volume, the respiratory system must be optimized to maximize the flow of O2. By

comparing inter-species data and using a generic description, it is then possible to find an allometric law, as we

shall see in this chapter.

Diffusion : no energy costs, but too weak. As blood entering the pulmonary capillaries has an oxygen

partial pressure lower than the oxygen partial pressure in the alveolar air, oxygen flows to the blood by

the process of diffusion that tends to balance the partial pressures between blood and the alveolar air.

For the lung’s point of view, the blood acts as an oxygen sink. The transport of carbon dioxide in the lung

relies on the same processes than that for oxygen, except that blood flowing in the alveoli membranes

acts as a source of carbon dioxide. The diffusion process is passive in the lung i.e., no energy is spent by

the organ to perform the transport. Notice that this is not true from the pulmonary blood circulation point

of view, as blood has to be incessantly renewed tomaintain the respiratory gas partial pressure difference

between the alveolar air and the blood. However, at the metabolic time scale, the diffusion process has
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Figure 14.3: Illustration of the lung model used in this chapter – The tree in beige mimics the bronchial
tree, where oxygen and carbon dioxide are only transported along the branches. The tree in blue mimics
the acini, where the respiratory gases are transported along the branches. They are also captured by the
alveoli that cover the walls of the branches.

a limited range in the airway tree. Were the transport of the respiratory gas only based on diffusion, the

lung could not maintain the respiratory gas flow at a level compatible with the mammals metabolisms.

The reason behind this limitation stands in the size of the airway tree. The pathways from the ambient air

to the respiratory zone are too long and narrow for the diffusion to provide gas flows compatible with the

metabolism of mammals. In the case of the human lung, the typical length of these pathway is of about

Lp = 30 cm [478]. The characteristic time tp for an oxygen molecule to travel by diffusion through all such

a pathway can be estimated using a dimensional analysis. Using Lp and the diffusion coefficient of oxygen

in air D = 0.2 cm2 · s−1 [479], the order of magnitude of tp can be estimated with:

tp =
L2

p

D
' 4500 s = 1 hour and 15 minutes!

Hence, a pure diffusive transport of the respiratory gas cannot fit themammals needs. Actually, in human,

the order of magnitude of the length LD traveled by diffusion during the typical time of inspiration i.e.,

ti = 2 seconds, is LD =
√
D × ti ' 6.3 mm. Thus, in the resting human, diffusion can transport oxygen

from the terminal bronchioles to the nearby exchange surface. However, at a time scale compatible with

the metabolism, diffusion cannot reach the upper part of the bronchial tree. It cannot either reach the

deeper parts of the respiratory zone, which is non active at rest. Actually, this last phenomenon, called the

screening effect [479], plays a crucial role in the lung. It is described in details later in this chapter. More gen-

erally, the limited spatial range of diffusion has many consequences on the living systems. An emblematic

example is its role on the size limitation of insects [480], where diffusion in the tracheal tubes is the only

mean of respiratory gas transport. It participates to the explanation of why the increased atmospheric

oxygen concentration during the Palaeozoic era allowed insects to be larger than today as, following Fick’s

law, the diffusive flow is proportional to the gradient of partial pressure between the ambient air and the

inner body.

Convection : the rescuer. We have seen that the diffusion process is too weak to transport the respiratory

gas through the whole airway tree. In the absence of other transport mean, the oxygen partial pressure in

the lung would decrease and the flow of oxygen to blood would drop. Similarly, the carbon dioxide partial

pressure would increase and prevent the exchanges with blood to occur. Consequently, the air in the lung

has to be renewed in order to expel the excess of carbon dioxide and to refresh the inhaled air volume

with oxygen. This phenomenon is called the ventilation. The ventilation is a dynamic i.e., time-dependent,

process based on the succession of inhalation and exhalation of a volume of air, the tidal volume, at a

given rate, the breathing frequency. Ventilation is performed thanks to a set of muscles that surround
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the lung and modify its volume. At rest regime, the main acting muscle is the diaphragm, located at the

base of the lung. By first pulling onto the lung, this muscle deforms the lung tissues, creating a negative

pressure drop and the transport a volume of ambient air inside the lung; this is the inspiration phase. At

rest, the elastic energy stored in the tissues during the inspiration phase allows for a passive recoil of the

lung and a volume of air equal to the volume inhaled is expelled; this is the expiration. Then the cycle

repeats following the same procedure, at least at rest. Since the duration of a breath cycle for a resting

human is about four to five seconds, a human performs, on average, about six to seven hundred millions

breaths during her/his lifetime.

Modeling the oxygen transport. The transport of oxygen in the lung is then driven by three phenomena:

diffusion, convection by the airflow and exchangewith blood through the alveoli walls in the alveolar ducts.

The partial pressure of oxygen averaged over the lumen area is transported along the longitudinal axis x

of the airway. Hence, in each airway of our idealized lung, the mean partial pressure of oxygen P over the

airway section follows,
∂P

∂t
−D

∂2P

∂x2 + u
∂P

∂x
= β (Pblood − P ) , (14.2)

where D is the oxygen diffusion coefficient, u is the velocity of the airflow, β is a reactive term and Pblood

is the partial pressure of oxygen in the capillary blood. The reactive term β mimics the exchanges with

blood through the alveolar membrane. This coefficient depends on the diffusion coefficient of oxygen in

water, on the solubility coefficient of oxygen in water, on the thickness of the alveolar-capillarymembrane,

and on the radius of the alveolar duct. It is equal to zero in the bronchial tree since no exchange with

the blood happens in this part of the lung and is positive in the acini. The oxygen partial pressure in

blood is determined by assuming that the flow of oxygen leaving an alveolar duct through the alveolar-

capillary membrane is equal to the flow of oxygen captured by blood, accounting for the oxygen captured

by hemoglobin and for the oxygen dissolved in plasma [457]. Finally, all generations are linked through

bifurcations by assuming continuity between generations and conservation of the quantity of oxygen at

each bifurcations.

Math box 14.C Conditions for the numerical simulations

Our model takes as input the ventilation parameters: the tidal volume VT (in mL) and the breathing frequency fb

(in min−1) and outputs the mean amount of oxygen exchanged with blood over a respiratory cycle. To validate

our model, we performed computations at rest by assuming that a human breathes around 12 times per minute

and inhales around 500 mL of air for each breathing cycle. With these parameters, our transport model gives an

oxygen flow exchanged with blood of 230 mL · min−1, which is close to the average physiological value of 250
mL · min−1 [457].

14.2.3 The energy expenditure or the cost of breathing

Breathing is part of the basal metabolism, meaning that it is a regular and mandatory energy cost for

the maintenance of the body. Yet, natural selection, one of the main processes driving evolution, tends

to select for minimal energetic cost so that the organisms can allocate most of their resources to their

reproduction. Hence, in order to understand breathing, it is important to determine the origin of the

energetic costs and how they are affected by the breathing process. We already pointed out that diffusion,

considered from the lung point of view, is a passive process. So, most of the energetic costs involved in

the lung function arise from the process of ventilation. Energy is spent through the action of the muscles

on the lung. This action has two main effects: it deforms the tissues and it displaces the air along the

bronchial tree. On the one hand, the tissues are deformed due to the action of the thoracic muscles,

especially the diaphragm. This deformation is considered as elastic in the normal range of ventilation

[481], and energy is dissipated along the displacement of the tissues. On the other hand, as every gas, air

acts as a fluid with specific viscosity. As the bronchial tree is an assembly of a high number of narrow tubes

with decreasing size, the energy spent for the displacement of the air in the bronchial tree is dominated
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Figure 14.4: Trade-off between elastic energy stored in the tissue and viscous energy dissipated in the air
circulation (exercise regime, computed from our model).

by the energy dissipated by the friction of air in the bronchi. The air kinetic energy is negligible relatively

to the dissipation. This can be summarized in term of the power spent by the muscles (energy per unit of

time):

Pm︸︷︷︸
muscle power

' Pe︸︷︷︸
elastic power

+ Pa︸︷︷︸
air viscous dissipation

.

These quantities depend on several lung characteristics, on the breathing frequency f and on the amount

of air inhaled during on breath cycle VT . This raises the trade-off shown in Figure 14.4 and, using optimiza-

tion theory, optimal ventilation frequencies and tidal volume can be be predicted. The viscous dissipation

of air in the bronchial tree is characterized by the lung hydrodynamic resistance R, which is directly re-

lated to the geometry, size, number and structuring of the bronchi [481]. The hydrodynamic resistance

is a physical quantity that represents how the energy put in the system is divided between kinetic energy

and heat energy. It connects the volume of air displaced per unit of time, also called air flow F , to the

force per unit of surface applied to the air, also called air pressure pa: p = RF . For the same pressure

applied on the lung, the higher the hydrodynamic resistance, the lower the air flow and the higher the dis-

sipation. Then, the power dissipated by viscous friction of the air inside all the bronchi can be estimated

by Pa = pF = RF 2. By assuming in our case that the velocity of the air follows a sinus function, we can

deduce the power dissipated by viscous friction as follows:

Pa = 1
4R (πfbVT )2 ,

where R is the hydrodynamic resistance, fb the respiratory frequency and VT the tidal volume.

The elastic power is characterized by the complianceC of the lung, that relates the force per unit of surface

applied by themuscles (pm) to the volume change of the lung [483]. The compliance depends on the lung’s

volume, especially when the deformation of the lung is high although the compliance can be considered

constant while healthy. That is why, in our case, we assume that the compliance is a constant and we

neglect the non-linearities arising at large lung’s deformations [484]. The elastic power can be estimated

by integration of the volume along the inspiration phase and it gives us,

Pe = V 2
T fb

2C ,

where C is the compliance of the lung previously defined. Finally, the total energetic cost of breathing P

can be written as the sum of the power dissipated by viscous friction Pa and the elastic power Pe. The

total power has to be minimized relatively to the tidal volume VT and the breathing frequency fb with a

constraint on the oxygen flow to blood that has to match the oxygen flow demand (see Equation 14.1).

Thanks to our model previously defined, we can compute the oxygen flow to blood as a function of tidal
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volume and breathing frequency and compare it to the oxygen flow V̇O2 requested by the body at the

regime considered.

Our model predicts (see Figure 14.5), for a human at rest, an optimal breathing frequency of 12.2 breaths
per minute and an optimal tidal volume of 497 mL, which are very close to the average physiological val-

ues [485]. The model exhibits a robustness in term of frequency perturbation around the optimal. A 5%
shift in the energy brings the frequency into a range between 8 breaths per minute up to 18.5 breaths

per minute. This effect is due to the fact that, at low regimes, a low tidal volume VT is sufficient to per-

form an optimal ventilation. When the exercise intensity increases, the power profiles as a function of

the frequency become steeper and steeper and focus the optimal value within a tighter region. It implies

that a shift from the optimal configuration at high intensities is predicted to be costly in term of energy

spent. This behavior is fully compatible with the fact that the control of ventilation is stronger at exercise,

preventing even talking. The question of the optimal conditions of ventilation in human leads naturally to

a series of extensions that need to be considered. We have seen previously that the optimization under

constraints occurs in almost every organ in all the living beings. Thus, could we expect the present model

to be extended to all mammals, as the control of ventilation is, more than probably, present in the whole

mammalian class?

14.3 Allometric scaling laws for respiration and ventilation

The answer to this question of generalization leads us to a vast scientific question that will bring us back

to the late 19th century and which is still open on many aspects.

14.3.1 The emergence of scaling relations in nature

In 2007, Savage and West published a seminal work in which they present a collection of data of sleep

duration in a set of mammalian species. Among other major results, their analysis confirmed the previous

observation that the larger the animal, the shorter the duration of its sleep cycle [486]. More precisely,

the sleep duration correlates negatively with the body mass of the mammal and follows, based on the

data from Savage & West, an interesting exponential law of the form ts = 10.1M−0.103, with ts the sleep

duration in hours during a 24 hours period and M the body mass of the mammal in kilograms, as seen

in Figure 14.6 [486]. Thus, by taking the logarithm of both sides of the equation, one can write this sleep-

to-mass relation as log ts = log 10.1 - 0.103 logM i.e., a linear relation between the logarithm of the sleep

duration and the logarithm of the mass of the animal, see Figure 14.6. As we will see later, this type of
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Figure 14.5: Total power expenditure during ventilation (W) as a function of the respiratory frequency
(s−1) for different intensities of exercise – Dots correspond to the optimal ventilation frequency i.e., that
minimizes the dissipated power. Adapted from [482].
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(A) Linear scale (B) Logarithmic scale

Figure 14.6: Distribution of total sleep duration (S) in mammals – The plots are based on data from Savage
& West [486]. The data are best fitted by the red curve which represents the corresponding allometric
relation S = 10.1 ×M−0.103.

exponential relation is now referred, in ecological sciences, as an allometric scaling. In general, an allo-

metric law will write Y = Y0M
b, where Y is the studied – physiological, morphometric – property,M the

mass of the living organism, Y0 and b the allometric prefactor and exponent, respectively [487]. Actually,

the concept presented by Savage & West is far from being recent. The history of the study of allometric

relations dates back to the 19th century. Scientists from various disciplines started to analyze the changes

in shape and form of living beings in relation with their overall size.

14.3.2 A brief history of allometry

In a pioneer work from 1897, Eugène Dubois described the relation that guides the evolution of brain’s

mass and that of the individual in a variety of mammal species [488]. He observed that brain is smaller,

relatively to the their mass, in bigger animals. He then derived an adequate expression for this relation,

such as e = c sr , where e is the brain’s mass, s the body mass and c and r two coefficient that define the

relation, with r close to 1/2, justifying the relative decrease in brain’s mass that he observed. As far as

we know, this represents the first mathematical expression of an allometric law, years before this term

was even coined as it. It is in 1907 that Lapicque [489] had the idea to transform Dubois’ relation in a

log-log dependency, giving a straight line representation in logarithmic coordinates that is now familiar to

us, cf. Figure 14.6. At that time, this work was purely descriptive and empirical. However, biological and

ecological data started to accumulate in the following years that led, mainly in animal species, to a variety

of scaling laws. Thus, the ubiquity of allometric relations in every ecological discipline raised the question

of the nature of the biological mechanisms underlying their observation.

In parallel, the question of the emergence of forms in living organisms arose in the literature. One of the

major works at that time came from the Scottish naturalist D’Arcy Wentworth Thompson, whose main

contribution came from his book On Growth and Form, first published in 1917 [490]. In this publication,

he adopted the – still debated – thesis that the living systems as we know are submitted, in addition to

the process of natural selection, to the physical laws of nature that can modify, transform and adapt their

form and their path of development i.e., their growth. This reference publication paved the way to the

new disciplinary research field of biomathematics and, even in present times, is still considered as amajor

contribution to this field. However, the D’Arcy Thompson’s approach has not been accepted by the whole

community, and the debate is still vivid more than a century after the publication of the first edition of

his work [491]. Indeed, D’Arcy Thompson was not entirely convinced by the pure Darwinian approach

that dominated the field of developmental biology in his time. Although a strong Darwin’s admirer, he

rather considered that the paths of development of the organisms were not dictated purely by acquired

mutations and hard-encoded routines. At the contrary, he was convinced that these paths could only

follow a number of sequences, a series of schemes that, following the laws of physics and chemistry,



Allometric scaling laws for respiration and ventilation 239

would allow for the formation of the variety of shapes and developments observed in nature [492]. Critics

emerged about his teleological – in some ways – conception of evolution, or at least of emergence of form.

In essence, his work was one of his time, and his theories of forces of development were not supported

by the genetic and molecular knowledge that has since been accumulated [491]. D’Arcy Thompson was

an author of his time. He paved the way, with others developmental naturalists, to numerous concepts

in biomathematics that influenced a number of past and present works, as discussed in Section 14.1. But

D’Arcy Thompson was also an author among his peers. Motivated by his conception of developmental

shaping forces, he started to correspond with a younger British naturalist named Julian Huxley, who will

later forge a prolific international career as a biologist and science advocate, although carrying with him

some controversies that are beyond the scope of this chapter.

The scientific correspondence started slightly after one of Huxley’s major publication, dated from 1924. In

this article, Huxley studied the dynamics of growth of chelae in a crab species whose individuals possess

one small and one large chela [493]. What seems at first a highly specific topic is enlarged by the idea to

measure the mass of the chelae relatively to the mass of the individual. Following the steps of Dubois and

Lapicque, Huxleyweighted around 400 specimens of crab and plotted in a logarithmic scale themass of the

large chela against the total weight of the animal minus the weight of the large chela. He then observed

that the experimental data could be joined by a straight line in this logarithmic plot. The originality of

Huxley’s work resides in his interpretation of the results that he obtained. He noticed that the slope k of

the regression line remained larger than one, in accordance with the observation of the relative larger i.e.,

heterogonic growth of the chela compared to the growth of each individual. He then provided a proposed

mechanism for this relative growth: the rate of cellular division in the chela is larger than the one in the

rest of the body, more precisely in a k : 1 ratio [493]. With this – still emergent – mechanistic approach,

Huxley provided for the first time a simple method for deciphering heterogonic growth of a characteristic,

that will be observed as a straight line of slope k > 1 when plotted against the normalized mass of the

individual in logarithmic coordinates.

Finally, the works of Lapicque, Dubois, D’Arcy Thompson and all their contemporaries emerged in 1936

in a joint paper between Huxley and a younger scientist, Georges Teissier, in which they agreed for the

terminology of allometry and the associated law that is now famous y = bxα [494]. Altogether, this brief

section on the historical emergence of the allometric concept in ecological sciences depicts a vibrant and

active research theme, developed in the late 19th century, which extends the Darwinian concept of natural
selection towards the emergence of growth, form and function. However, the reader will notice that the

allometric approach of these times is still largely descriptive, with limited causal explanations of the nature

of the scaling coefficients and the putative mechanisms that drive their behavior.

14.3.3 Allometry: a mechanistic approach

Many years later, a possible approach that compensates for this lack of mechanistic causality would be

found in the work of West, Brown and Enquist (WBE), published in 1997 [487]. In this major article, the

authors focused on the allometries in metabolic properties that have been described in the past decades,

with the aim of developing a new mechanistic framework that would explain these allometries i.e., be

able to derive the allometric exponents for the numerous physiological properties at stake here. The

question of the existence of a general allometry for the metabolic rate of the living beings is a thrilling

question. This would imply that all the organisms, from the tiny bacteria to themassive trees ormammals,

do possess shared mechanisms of energy expenditure that would reflect on the presence of a common

exponent all over the different orders of magnitudes among the species. Furthermore, the exponent

should reflect somehow, by its value, the nature of the energeticmechanisms, and thus could bederived by

a comprehensive modeling approach. WBE answer positively to these strong hypotheses, and developed

a structured approach that focuses on the modeling of energy and mass fluxes in biological networks –

cardiovascular and respiratory systems for example – which they consider as the common ground for

all the species [487]. The hypotheses of WBE are of strong nature, and have been discussed largely in

the literature (see for example [495]. Although this important – and still open – debate lies beyond the
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Figure 14.7: Scaling laws for lung usage – Predicted ventilation frequency (s−1 – left) and tidal volume (L
– right) as a function of the mammal mass (kg – log-log scale) at different metabolic regimes. BMR: Basal
Metabolic Rate, FMR: Field Metabolic Rate, MMR: Maximal Metabolic Rate.

scope of this chapter, it appears important to emphasize that the WBE approach created a mechanistic,

mathematical framework for the study of allometric relations that, somehow, acted as a bridge between

the traditional descriptive allometry and the modern mechanistic approach.

14.3.4 Allometric relations for the respiratory system

As far as the respiratory system is concerned, the model of WBE appears to act as a promising frame-

work for the study of the allometric relations of this system [496]. Indeed, the lungs of mammals are built

as a network of mass and energy transfer, as described before, and share morphological and functional

properties, raising the question on whether the previous results for human can be extended or not to all

mammals. These properties are known to be dependent on the massM of the mammal with allometric

scaling laws [487, 494]. Furthermore, the physics of ventilation, and hence its control, is linked to the ge-

ometry of the lung. Consequently, the morphological differences among mammals also affect the control

of ventilation.

First, our gas transport model for the human lung presented in the previous section can be slightly mod-

ified to be valid for all mammals. Indeed, we know that the lungs of mammals share invariant charac-

teristics [485] such as the tree-like structure with bifurcating branches and the decomposition into two

parts: the bronchial tree and the acini. The derivation of a lung model that depends only on mammal

mass requires to relate explicitly the morphological parameters involved in our model such as the tra-

cheal radius and length, with the animal mass. We used the datasets from [487]. The oxygen transport

and exchange now occur in the idealized lung that has been generalized to fit any mammal. The transport

of oxygen in the mammals lung is still driven by the tree phenomena: convection by the airflow, diffusion

and exchange with blood through the alveoli walls. Hence, in each airway, the partial pressure of oxygen

follows the convection-diffusion-reaction equation (14.2) previously defined. The exchange coefficient β

is dependent on the mammals mass since it depends on the radius of the alveolar duct which follows an

allometric law. Finally, we search for the minimum of the total energetic cost of breathing P relatively to

the tidal volume VT and the breathing frequency fb with a constraint on the oxygen flow to blood that has

to match the oxygen flow demand V̇O2 . Since allometric scaling laws for oxygen flow demands for mam-

mals at basal, field and maximal metabolic rates are available in the literature [497, 498, 499, 500], we can

compute the desired oxygen flow V̇O2 depending on the mammal mass and on the metabolic regime.

Our model predicts that breathing frequencies and tidal volumes follow indeed allometric scaling laws.

Furthermore, these laws can be derived in three different metabolic regimes: basal metabolic rate (BMR),
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field metabolic rate (FMR) and maximal metabolic rate (MMR), as seen in Figure 14.7,

fBMR
b ≈ 0.61M−0.27 Hz, V BMR

T ≈ 6.1M1.04mL,

f FMR
b ≈ 1.17M−0.31 Hz, V FMR

T ≈ 11.8M0.97mL,

fMMR
b ≈ 1.37M−0.17 Hz, V MMR

T ≈ 29.7M1.01mL.

It predicts exponents that are in accordance with the values observed in the literature. Indeed, breathing

rate at BMR has been estimated to follow the law fBMR
b ' 0.58M− 1

4 Hz [501] and tidal volume to follow the

law V BMR
T ' 7.14 M1 mL [487]. At other metabolic rates, less data is available in the literature except for

the breathing rate of mammals at MMR, estimated to follow the law fMMR
b ' 5.08M−0.14 Hz [502]. The val-

idation of our model at both minimal and maximal metabolic regimes suggests that its predictions should

be coherent whatever the regime, in the limit of the availability of its input parameters. This indicates that

the mechanical power spent for ventilation might have driven the selection by evolution of the ventilation

patterns.

The idealized representation of the bronchial tree and of the exchange surface used in this study accounts

for five core characteristics common to all themammals lungs, as identified in the literature [485, 478, 482,

487]: a bifurcating tree structure; an homogeneous decrease of the size of the bronchi at the bifurcations;

the size of the trachea; the size of the alveoli; and the surface area of the exchange surface. These charac-

teristics are the main determinants for the tuning of the ventilation in order to minimize its energetic cost.

This indicates that once the metabolic regime is fixed, the morphology of the lung is probably the primary

driver of the physiological control of ventilation. We tested this hypothesis by altering, in our analysis, the

allometric scaling laws related to the geometry of the lung. We observed corresponding alteration of the

laws predicted for tidal volumes and breathing frequencies. Since morphology itself has probably been

selected by evolution in order to minimize the hydrodynamic resistance in a constrained volume [478],

morphology and ventilation patterns are intertwined together in order for the lung to function with a

low global energetic cost i.e., a low hydrodynamic resistance R and a low ventilation cost P(VT , fb) that
also depends on R. Interestingly, our representation of the lung does not account for interspecific differ-

ences known to exist between the lungs of mammals, such as different degrees of branching asymmetry,

monopodial or bipodial lungs, etc. [503].
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Figure 14.8: Localization in terms of lung generation index of the conductive zone and of the exchange
surface (acini) as a function of the mammal species mass (kg) – Both the green line (rest regime – left) and
the red line (maximal exercise regime – right) represent the transition from a transport of the respiratory
gas by convection to a transport by diffusion. Adapted from [496].

As in the human lung, the transport of gases in the mammalian lung relies on the two major processes of

diffusion and convection. We know that, in humans, the diffusive transport in the alveolar ducts is submit-

ted to a physical phenomenon called the screening effect [479]. Indeed, as gas exchanges occur through

the alveoli walls lining the alveolar ducts, the diffusion can transport the respiratory gases only on a limited
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Physics box 14.D The cost of oxygen transport

The allometric relationship found applies to the pulmonary organ. This is a crucial link in muscular activity, and

therefore in locomotion or any activity requiring an effort, even moderate. As such, its properties must also be

present during physical exercise. A useful quantity, based on oxygen consumption V̇O2 and frequently used in

the literature, is the Cost of Oxygen Transport (COT). This corresponds to the ratio V̇O2 /v with v the locomotion

velocity. Using the correct metabolic conversion factor COT is the energy dissipated per unit length. It is known

empirically that COT shows a local minimum corresponding to an optimal situation in which the minimum energy

is dissipated per unit length. Building on this property, Tucker in 1975 [504] noted that this minimum follows

distinct allometric laws according to the major locomotion families, runners, swimmers and fliers, see the Figure

below.
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The COT is defined here as the ratio P/(M v), with P the power production and v the velocity as a function of the

bodymassM for several species (adapted from [504]). Green are swimmers, red are fliers, black are runners, blue

are engines designed by engineers. Continuous lines correspond to linear fits on data shown with filled markers.

range of generations. This range depends on the physico-chemical properties affecting the diffusion of

the gas in the alveolar air and through the alveolo-capillary membrane. This range has been estimated to

be of about four generations for oxygen and one for carbon dioxide [479] in humans. The description of

the screening effect in mammals requires several additional hypotheses. Because of the screening effect,

the alveolar ducts far from the convection–diffusion transition get only a small diffusive oxygen flow, as

most of the available oxygen has been captured by the alveolar ducts closer to the transition. In these

deep parts of the acini, the oxygen partial pressure gradient between the deoxygenated blood and the

alveolar ducts, which drives the oxygen capture by blood, is low. Carbon dioxide is mostly evacuated from

the alveolar ducts very close to the transition: they are refilled by carbon dioxide too quickly for the deeper

ducts to be drained of gas by diffusion. Hence, the ducts far from the transition cannot be relieved of the

carbon dioxide and the exchange with blood in these ducts is low. As a consequence, the deeper part of

the exchange surface is not available for the exchanges. The location of the transition between convective

and diffusive transport of the respiratory gas drives the magnitude of the screening, and this transition

depends on the geometry of the airway tree and of the ventilation regime. The screening phenomenon in

mammals has been studiedmathematically in [496]. Within the framework of the models hypotheses, the

authors show that the number of conductive airways NconD and the number of alveolar ducts Nad follow

allometric scaling laws:

NconD ∝ Nad ∝ M
7
8 .
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Physics box 14.E The cost of oxygen transport as a function of speed

In walking or running animals, the cost of oxygen transport

(see Box 14.D) depends on an animal’s speed, as shown in the

figure on the right. On top is oxygen consumption V̇O2 of a

horse plotted against the speed v/v? for walk (red stars), trot

(blue dots), and gallop (green squares), and their fits with our

modeling. Bottom is COT for the same set of data. The three

gaits data are normalized by the muscle fiber ratio leading to

a unique master curve.

Based on the model proposed in Box ”Energy conversion”, it

has been demonstrated that a living system can be described

as a collection of N identical, standard, muscle units operating

in parallel [505]. Then the COT expression becomes:

COT =
N

NH

(
a0 k + rM k2 v +

b

v

)
(14.3)

with a0 k a constant, rM a dissipative term and b the basal con-

sumption i.e., out of effort. This last three parameters describ-

ing the standard muscle unit.
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We are then allowed to derive the minimum of the COT as an intrinsic property of energy conversion machines,

COTmin ∝
√

rM b. It is found independent of the number of standard muscle fibers involved in the effort. Thus,

effort is a combination of the number N of standard muscle fibers used and their characteristics b and rM . The

parameterization of the standard muscle fiber depends on the specific implementations for an organism. It can

be expected to be identical for a single animal. We have carried out this work in the case of the horse, which

exhibits three well-differentiated gaits: walk, trot and gallop (see the Figure above. We show that the COT curves,

or equivalently V̇O2 , of the different gaits can be found using N as the only adjustable parameter, leaving the

muscle fiber parameters unchanged.

As muscle is the most commonmeans of producing power in animals, the typical behavior described here should

be found in the most general way, without barriers between species, genera or classes. Of course, muscular

implementation is specific to each animal, constrained by its own characteristics (intensity of effort, size, etc.),

which suggests the origin of the observed scaling laws.

Additionally, they show that the number of airwaysNconV in which the gases are transported by convection

also follows an allometric scaling law. This law depends on the ventilation regime:

NconV ∝


{

M0.56 ifM < 150 kg
M0.405 ifM ≥ 150 kg

at rest

M0.63 at maximal exercise

These equations translate into linear relationships in terms of log(M), as shown in Figure 14.8. Rest regime

is represented on the left plot and maximal exercise regime on the right plot. The figure indicates that,

at rest regime, the small mammals use their lung very efficiently, as only a few of their acini generations

are fed by diffusion, as indicated by the green curve in Figure 14.8. Hence, the screening effect in small

mammals is weak. However, this suggests that they have few reserve for increasing their metabolism

at exercise [479, 496]. As suggested by the red curve on the right plot in Figure 14.8, the shift of the

transition between convection and diffusion to deeper generations does not increase significantly the

available exchange surface. To the contrary, large mammals are submitted to large screening effects at

rest regime, and a large part of their exchange surface is not used. However, during exercise, the shift of

the transition towards a deeper lung generation allows to recruit a significantly larger exchange surface.

It is to be noted that the predictions of ourmodel for the localization of the convection–diffusion transition

in idealized lungs lead to good estimations of the allometric scaling laws for tidal volumes and breathing
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frequencies, indicating that themorphological parameters included in ourmodel might drive primarily the

control of ventilation.

Through this short introduction to allometry of constrained organs, we started to decipher the latentmech-

anisms of development of a constrained organ inside a class of organisms. The example of the lung is

emblematic: how a complex and central organ can develop, specialize and evolve to fulfill the needs of

organisms, while sharing among species its particularities, and efficiency.

14.4 Concluding remarks

Biological optimization, making themost effective use of limited resourceswithin a set of given constraints,

is a multifaceted subject that has been a source of content for countless articles and a stimulus for related

discussion. Tomake the optimization of biological systemsmore readily comprehensible, this chapter has

focused attention on a single organ, the human lung, and used it as a stage on which to introduce basic

principles and a canvas on which to illustrate their application. The range of constraints, for the most

part energetic or morphometric in nature, that have conditioned the development of the lung over the

long course of its evolutionary history and given the mammalian respiratory system its particular shape

is expansive. The characteristics of these constraints and the conditions that govern their interplay can

be represented as mathematical equations that form the basis for models that describe the scale of the

effect constraints have on biological systems and illuminate the magnitude of their impact. The insights

into the lung’s form that these models yield also provide a more thorough understanding of its function,

characterizing, for example, modulations in the regulation of respiratory ventilation that occur in response

to changes in the body’s state – e.g., when the body is at rest or in motion; when it is healthy or when its

health is compromised. The models are also a source of results that can be abstracted and subsequently

applied to both human organs and those of other species that are larger and more complex. Considered

within this broader context, they can also be seen as integral elements of much larger systems and as

instances of the general allometric laws to which those systems adhere. The significance of the larger

orthogenetic and phylogenetic implications that this abstraction of specific models into generalized laws

carries cannot be overstated and discussion of those implications is vigorous and far-reaching. Through

these discussions, many aspects of allometry have been illuminated and a deeper understanding of the

complex systems that determine the ways individuals, species and systems function and interact has been

achieved. Yet many of the field’s underlying mechanisms and governing principles remain to be discov-

ered. This chapter is the prelude to a journey into a space at the intersection of biology, ecology, and

mathematics that the allometric universe occupies and the fuel for the exploration of the mysteries those

hidden mechanisms are waiting to reveal.

Recommended readings

◦ For a proper introduction to respiratory physiology, in healthy and pathological conditions: John B.West,

Respiratory Physiology: The Essentials [457].

◦ A reading for a deeper understanding of the lung morphometry: Ewald R. Weibel, Morphometry of the

human lung [477] and one for the respiratory gases exchange: Ewald R. Weibel, The Pathway for Oxygen:

Structure and Function in the Mammalian Respiratory System [485].

◦ Anice thesis about (in)organicmechanismsofmorphogenesis: Raphaël Clément,Morphogénèse et développe-

ment pulmonaire [506].

◦ The old but gold textbook in morphogenesis of living beings: D’Arcy Wentworth Thompson, On Growth

and Form [490].

◦ On allometric relations, in general: Robert H. Peters, The Ecological Implications of Body Size [497] and

from a modeling approach: G. B. West et al., A general model for the origin of allometric scaling laws in

biology [487].
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Problems

Problem 14.1

Recover the expression of the power dissipated by viscous friction Pa and the elastic power Pe while

assuming that:

◦ the air velocity is a sine function,

◦ the power obtained is a mean value over inspiration.

Hint: The instantaneous elastic power is written as follow,

Pe = 1
C
V (t)F (t),

where C is the compliance of the lung, V (t) is the volume of the lung and F (t) is the air flow.

Problem 14.2

The localization of the transition between convective and diffusive transport can be estimated with the

Péclet number. This number measures the relative influence of the transport of oxygen by convection

on the transport by diffusion. It depends on the generation and can be written as follow,

Pei(t) = liui(t)
D

,

where li is the length of the bronchi of generation i, ui(t) is the air velocity, and D is the diffusion coef-

ficient.

1. Compute the average of the time-dependent Péclet number Pei(t) over a half breath cycle while as-

suming that,

◦ the length of the bronchi of generation i depends on the length of the trachea as follow : li = l0h
i,

◦ the air velocity in generation idepends on the air velocity in the trachea as follow, ui(t) = u0(t)
(
2h2)−i

,

◦ u0 is a sine function,

◦ the tidal volume is the integral over the inspiration of the product of the cross section of the trachea

and the velocity of the air, VT =
∫ T/2

0 πr2
0u0(t)dt.

The expected expression is :

Pei = 2VT fbl0
πr2

0D

( 1
2h

)i

.

2. The generation k at which the transition between convection and diffusion occurs is computed by

solving the equation Pek = 1. Compute the value 2k for which Pek = 1.
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Reading recommendations

Cellular economics - and systems biology more generally - builds on knowledge from different disciplines

and on a history of ideas in biology and beyond. Below youwill find a number of books, articles, and online

resources that provide background information. For readings specific to individual chapters, please see

the “Recommended readings” sections at the end of each chapter.

Recommended textbooks

Books on Biochemistry and cell biology:

Cornish-Bowden, Athel. Fundamentals of Enzyme Kinetics; Wiley Blackwell, 2012 (4th Edition). A detailed

presentation of enzyme kinetics that also considers the broader implications of the field for areas such as

systems biology and bioinformatics. The book devotes particular attention to the areas of multi-enzyme

complexes and cooperativity.

Alberts Bruce, Heald Rebecca, et al. Molecular Biology of the Cell; Garland Science, 2022 (6th Edition). A

comprehensive textbook of cell biology which covers expression and transmission of genetic information,

internal organization of cells, and behavior of cells in multicellular organisms. The book also presents

experimental methods used to investigate cells and understand their behavior. Free access online (5th

Edition): https://archive.org/details/MolecularBiologyOfTheCell5th.

Swanson, Michele, S., Joyce, Elizabeth, A. and Horak, Rachel, E.A.Microbe; ASM Press, 2022 (3rd Edition).

An introductory textbook to microbiology that incorporates both fundamental principles and accessible

case studies to illustrate microbiology’s social and environmental relevance.

Milo, Ron and Phillips, Rob et. al. Cell Biology By The Numbers; Taylor & Francis, 2016. The book addresses

the relative paucity of quantitative information about biological systems. The authors propose ways to

quantify biological processes and objects and develop a “sense” for applicable scales and sizes. Free access

online: http://book.bionumbers.org/.

Phillips, Rob, Kondev, Jane, et al. Physical Biology of the Cell; Garland Science, 2012 (2nd Edition). This

textbook presents molecular and cell biology through the lens of physical biology. Biological phenomena

are treated as coherent systems founded on physical principles. The overarching topic is that quantitative

biological intuition builds on applying few fundamental physical models, and this logic can be used to

address a wide range of biological problems.

Harold, Franklin M. The Way of the Cell: Molecules, Organisms, and the Order of Life; Oxford University

Press, 2003. The text offers connections between physics, chemistry, and biology and how insights gained

from integrative approach help to understand the processes and principles that make the creation of liv-

ing organisms from inanimate chemicals possible.

Books on Biothermodynamics and biological physics:

Haynie, Donald T. Biological Thermodynamics; Cambridge University Press, 2008 (2nd Edition). An intro-

duction to bioenergetics focused on the physical nature of energy transformation in living cells. The book

covers relevant concepts of physics, like the laws of thermodynamics, Gibbs free energy, statistical ther-

modynamics, binding equilibria and reaction kinetics.

Nicholls, David, G and Fergueso, Scott J. Bioenergetics; Academic Press, 2013 (4th Edition). A textbook on

cellular energy flows and intracellular thermodynamics. The book takes recent advances in chemiosmotic

energy conversion into account; the book also covers the role that mitochondria play in the life and death

of the cell.

https://archive.org/details/MolecularBiologyOfTheCell5th
http://book.bionumbers.org/
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Nelson, Philip. Biological Physics; Chiliagon Science, 2020. Thebook covers biophysics, bioengineering and

nanotechnology and highlights recent advances in molecular motors, self-assembly, and single-molecule

manipulation. It also describes practical applications, and contains exercises designed to develop model-

ing skills of computer programming in languages such as MATLAB and Python.

Books on Systems Biology:

Klipp, Edda, Liebermeister, Wolfram, et. al. Systems biology, A Textbook; Wiley-Blackwell, 2016 (2nd

Edition). An overview of basic concepts in systems biology supplemented with illustrative examples and

practical case studies. The book presents an integrative approach to living systems combining biology,

computer science, and engineering.

Voit, Eberhard. A First Course in Systems Biology; Garland Science, 2018 (2nd Edition). A moderately ad-

vanced introduction to systems biology. The book prioritizes conceptualization and development of com-

putational models and the ways theoretical work enhances understanding of diverse biological systems.

Sauro, Herbert. Systems Biology: Introduction to Pathway Modeling; Ambrosius Publishing, 2020. The

book covers fundamentals of biochemical modeling, including a review on differential equations and

stochastic models. The book highlights the increasingly prominent role of computer models in modern

systems and synthetic biology. Book includes hands-on modeling exercises to illustrate computational

models methods for designing, building, simulating models; performing stability analysis, and parameter

estimation.

Palsson, Bernhard. Systems Biology: Simulation of Dynamic Network States; Cambridge University Press,

2011. An introduction to the mass action stoichiometric simulation (MASS) approach to transform stoi-

chiometric reconstructions into dynamicmodelsmaking use ofmetabolomic and fluxomic data. TheMASS

approach aims at depicting integrated processes that depend on a precise accounting of small molecules

and proteins.

Alon, Uri. An Introduction to Systems Biology: Design Principles of Biological Circuits; Chapman&Hall, 2006.

The book presents design principles of biological systems such as stability, robustness, and optimal design,

and how they can be applied to deepen the understanding of living cells. The book provides a mathemat-

ical framework that can be used to better understand and design biological circuits by highlighting the

recurring circuit elements that make up biological networks.

Szallasi, Zoltan, Periwal, Vipul, and Stelling, Joerg. System Modeling in Cellular Biology: From Concepts to

Nuts and Bolts; MIT Press, 2010. An overview of systems modeling in cell biology. The book incorporates

concepts frombiology, computer science,mathematics, statistics, physics, and biochemistry and considers

how they can be integrated to study biological systems. The book also coversmultiplemodeling paradigms

and discusses their suitability for modeling different biological systems.

Savageau, Michael, A. Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology;

CreateSpace Independent Publishing Platform, 2010. A primer to identifying and defining biological de-

sign principles for systems like complex biochemical pathways, intricate gene regulation circuits, network

interactions within the immune system, plasticity of neural networks, and the pattern formations of cellu-

lar networks. The book addresses integration of multiple viewpoints, the relation between the behavior

of intact systems and their molecular components; unifying design principles that give meaning for vast

diversity of alternative molecular designs; higher-level theory and quantitative prediction.

Books onMetabolic control:

Heinrich, Reinhart and Schuster, Stefan. The Regulation of Cellular Systems; Springer, 1996. The book

covers the mathematical analysis of enzymatic systems such as stoichiometric analysis, enzyme kinetics,

dynamical simulation, metabolic control analysis, and evolutionary optimization.
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Fell, David. Understanding The Control ofMetabolism; Frontiers inMetabolism Ser. No. 2; Ashgate Publish-

ing Company, 1997. The book offers a comprehensive theory of metabolic regulation, metabolic control

analysis, that encompasses the philosophical underpinnings of regulation and control concepts. It also

reviews and summarizes experimental methods that add a new dimension to the study of metabolism

and its regulation in complete multicellular organisms, isolated tissues, organs and individual cells.

Sauro, Herbert. Systems Biology: An Introduction to Metabolic Control Analysis; Ambrosius Publishing,

2018. This book provides an introduction to the field of Systems Biology and demonstrates how com-

putational models can be used to understand the dynamics of complex biological systems and how the

individual components that comprise those systems interact to produce complex behaviors. The book de-

tails the fundamentals of modeling biological pathways, such as metabolic, signaling, and gene regulatory

networks and instruction in the application of tools that can create those models.

Books onMathematics:

Slivanus, P. Thompson and Gardner, Martin. Calculus Made Easy; St. Martin’s Press, 1998 (revised/-

expanded edition). An introduction to Calculus for beginners and those with no previous background.

Essentials of differentiation and integration are covered: the power rule, product rule, and chain rule for

differentiation, as well as basic techniques of integration. The book takes a different approach to calculus

by emphasizing an intuitive understanding of calculus rather than insisting on a rigorous formalism. The

applications-oriented approach highlights the applicability of those concepts to real-world cases. Free pdf

at https://calculusmadeeasy.org/.

Johnston, Nathaniel. Introduction to Linear and Matrix Algebra; Springer, 2021. The book introduces key

concepts of linear algebra, such as vectors, matrices, systems of linear equations. The book primarily

covers vector spaces and their subspaces, and linear transformations between vector spaces. The book is

full of examples inwhich linear algebra is used in fields such as computer science, physics, and engineering,

e.g., least-squares solutions, Markov chains, and cryptography.

Strang, Gilbert. Introduction to Linear Algebra; Wellesley-Cambridge Press, 2023 (6th Edition). The book

covers theory and applications of vector algebra and geometry, systems of linear equations, vector spaces

and subspaces, orthogonality, determinants, and eigenvalues and eigenvectors, and linear statistical anal-

ysis. Later chapters concern contemporary applications and computational issues in linear algebra.

Strang, Gilbert. Calculus; Wellesley-Cambridge Press, 1991 (2nd Edition). This book is a thorough review

of both single-variable andmultivariable calculus. The bookmakes use of visualmethodologies (diagrams)

and illustrative examples to aid understanding and enhance the learning experience. Examples highlight

the application of calculus to a variety of domains such as physics and engineering and economics.

Lay, David, Lay, Steven, and McDonald, Judi. Linear Algebra and Its Applications; Pearson, 2014 (5th

Edition). The book provides a basic introduction to linear algebra, illustrated by a broad selection of case

studies. The emphasis is on developing a conceptual view of the subject and an understanding of why, and

not just how, certain methods are used. Problems and cases presented demonstrate how linear algebra

can be applied to various fields.

Strogatz, Steven. Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and

engineering; CRC Press, 2000. An exploration of concepts related to dynamical systems and nonlinear be-

haviors that exhibit unpredictable or chaotic behavior and cannot be easily predicted by simple equations.

The book covers the basics of dynamical systems, characterizing the properties of non-linear systems and

the points of equilibrium. The book also describes temporal dynamics of systems. Finally, it considers

fractals and unique properties of chaotic systems with practical examples.

Books on Information theory:

Cover, Thomas A. and Thomas, Joy A. Elements of Information Theory; Wiley Series in Telecommunica-

https://calculusmadeeasy.org/
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tions and Signal Processing; Wiley-Interscience, 2006 (2nd Edition). The book considers the theoretical

underpinnings and practical application of information theory. It also provides a thorough review of in-

formation theory’s constituent elements: entropy, data compression, channel capacity, rate distortion,

network information theory, and hypothesis testing.

Bialek, William. Searching for Principles; Princeton University Press, 2012. The book explores the inter-

section of theoretical physics and biology and argues that the fundamental principles of physics can be

applied to living systems and used to better understand their behavior. The book advocates for an inter-

disciplinary approach that integrates insights from physics, biology, andmathematics to develop a deeper

understanding of how living organisms behave and function.

Book on Economics:

Core ECON. Economics for a Changing World. A free textbook offering a new approach to teaching and

learning economics, supported by an extensive collection of online resources. Written by a global collective

of economists. All content is freely available at www.core-econ.org.

Classical books, relevant to cell biology and the “economy of the cell”

Brasier, Martin. Secret Chambers: The Inside Story of Cells and Complex Life; Oxford University Press,

2012. This book draws on insights from paleontology, biology, and history of science in its exploration

of the evolution of complex life on Earth. It focuses specifically on how cells developed the capacity for

organization and complexity using an investigation into the origins of eukaryotic cells, the fundamental

elements of all complex life forms, as illustration.

Zimmer, Carl. Microcosm: E. coli and the New Science of Life; Knopf Doubleday, 2009. This book describes

the role E. coli has played in defining the history of biology - from the discovery of DNA to more recent

advances in biotechnology. The book highlights the bacterium’s malleability, mutability, and survivability.

Methods which exploited E. coli’s inherent malleability have modified and repurposed the bacterium to

produce a range of beneficial products from drugs to fuels. Because it mutates in near real-time, E. coli

has also been a source of insight into the process of evolution. Detailed examination of its genome has

revealed a record of billions of years of evolutionary history. Finally, the book highlights the numerous

strategies E. coli uses to survive, from practicing chemical warfare to building microbial cities.

Monod, Jacques. Chance and Necessity: An Essay on the Natural Philosophy of Modern Biology; Vintage

Books, 1972. Monod argues that life should be understood as a result of natural processes that do not

adhere to a predetermined purpose or follow a predefined design: it arose by chance and that was then

conditioned by natural selection. Hence the book’s central thesis is that the observed evolution of life and

its diversity is the product of “Chance” - random mutations in genetic material and ”Necessity” the deter-

ministic laws of physics and chemistry that govern these mutations. Together, “Chance” and “Necessity”

explain the evolution and diversity of life.

Prigogine, Ilya and Stengers, Isabelle. Order Out Of Chaos; Bantam, 1984. The text reconciles order with

chaos and synthesizes concepts of time and chance to form a lens through which thermodynamics can be

appreciated and its attendant laws can be better understood. In doing so, it offers a provocative view of

the universe and novel insights into humankind’s position within it.

Harold, Franklin M. In Search of Cell History: The Evolution of Life’s Building Blocks; University of Chicago

Press, 2014. The book presents research into the history of the cell and the debate conclusions from that

research have generatedwhile describing the evolution of cellular organization, the origin of complex cells,

and the incorporation of symbiotic organelles.

Lyons, Sherrie L. From Cells to organisms: re-envisioning cell theory; University of Toronto Press, 2020.

The book integrates the history of science with fundamental biological concepts and provides context that

draws on the nature of scientific practice and rise of ideas. The book shows how discoveries, debates, and

www.core-econ.org
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scientific processes regarding understanding of cells and organisms shapedmodern biology. The focus on

controversy highlights the iterative nature of science, showing how scientific knowledge evolves through

argument, testing, and reinterpretation of evidence. The book connects past and present by describing

how cell theory laid the foundation for the development of fields such as molecular biology, biochemistry,

and genetics.

Niklas, Karl J. Plant Allometry: The Scaling of Form and Process; University of Chicago Press, 1994. The

author seeks to apply allometry to studies of plant evolution, morphology, physiology, and reproduction

and shed light on the relationship between organ size and plant form and physiology.

Rosen, Robert. Optimality Principles in Biology; Springer, 1967. The text concentrates on conceptual and

theoretical aspects of cost functions and the decisive role they play in the achievement of optimality in

biological systems. It focuses in particular on the relationship between extremization and stationarity,

and the significance of the necessary conditions for stationarity.

Rosen, Robert. Life Itself: A Comprehensive Inquiry Into theNature, Origin, and Fabrication of Life; Columbia

University Press, New York, 1991. A treatise on complex biological systems that calls into question “reduc-

tionism”, the belief that all complex systems can be broken down (reduced) to their constituent parts. The

goal of this approach is to effect more rigorous analysis.

Schrödinger, Erwin. What is life? With Mind and Matter and Autobiographical Sketches; Canto Classics

(Cambridge University Press reprint), 2012. The book investigates the nature of life from the physics per-

spective and speculates on the age-old question of the relationship between mind and matter. Through-

out the book, the author attempts to reconcile biology and quantum physics, in order to demonstrate how

seemingly chaotic processes of living organisms in fact obey the laws of physics while maintaining order

and stability. Some of the hypotheses articulated in the book laid the conceptual foundation for molec-

ular biology, e.g. the supposition that the key to life lies in molecular structures that store and transmit

information.

Cornish-Bowden, Athel. The Pursuit of Perfection: Aspects of Biochemical Evolution; Oxford University

Press, 2004. The book explores the interplay of biochemistry and evolutionary biology, the two being im-

plicitly connected and that each can only be understood fully in the context of the other. The book also ar-

gues for amore balanced approach to science: in light of Nature’s complexity and unpredictability, perfect

models are unattainable; we should strike a balance between accuracy and practical application. Diver-

sity of biological systems is a prime example of this. The book examines how natural selection optimizes

biochemical processes and enzymes but stops short of achieving absolute perfection due to constraints

like energy efficiency, environmental fluctuations, and genetic variation.

West, Geoffrey. Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in

Organisms, Cities, Economies, and Companies; Weidenfeld &Nicolson, 2017. This book presents the theory

of scale that is grounded in the realization that universal mathematical laws govern complex systems in

nature, society, and economics. These so-called scaling laws reflect underlying efficiencies and constraints

based on how energy, resources, or information are distributed across networks. The book draws from

biology, physics, and complexity theory to explain the mathematical principles that govern the scaling of

both living systems and social organizations: cities, companies, and organisms.

Dawkins, Richard. The BlindWatchmaker: Why the Evidence of Evolution Reveals a UniverseWithout Design;

Norton & Company, 1986. Dawkins makes the case for the theory of evolution through natural selection

and in doing so refutes the intervention of the divine (metaphorically referred to as the “Watchmaker”).

The book highlights the differences between human design and planning and the way natural selection

works. Drawing a distinction with the original metaphor for the presence of the divine, the book concludes

that the evolutionary process, on further investigation, reveals itself to be more similar to that of a blind

watchmaker.
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Classical articles that shaped the thinking in our field

Jacob, François. “Evolution and Tinkering” ; Science, volume 196, issue 4295, 1977. The article elucidates

the concept of evolution by viewing it through the lens of “tinkering”. It proposes that consideration of the

cumulative effects of history on the evolution of life leads to an alternative account of the patterns that

characterize the history of life on earth.

Gould, Stephen Jay, Lewontin, Richard. The spandrels of San Marco and the panglossian paradigm: a cri-

tique of the adaptationist programme; Proceedings of the Royal Society B: Biological Sciences, 205(1161),

581–598, 1979. This paper is a critique of the adaptationist view of evolution that the authors illustrate by

drawing an zanal;ogy to an architectural feature called the spandrel. The adaptationist school holds that

most biological features adaptations and that these adaptations are the result of evolutionary pressures

that have favored their development because they offer some advantage to the organism in its environ-

ment. Countering the adaptationist view, the authors of the critique posit that just as the spandrel, a

triangle-shaped space between arches in structures like the Basilica of San Marco, is a byproduct of the

arches and domes that are the Basilica’s constituent elements but can be artistically decorated, making

them look intentional many biological traits may be byproducts of other structural necessities, not direct

adaptations. In fact, these traits may not serve any specific adaptive purpose but have come into being as

a result of constraints, like the need tomaintain structural integrity, or as side effects of other adaptations.

Lazebnik, Yuri. Can a biologist fix a radio?— Or, what I learned while studying apoptosis; Cancer Cell, 3,

179-182, 2002. The paper offers a critique of the way systems biology, in particular, approaches the study

of living organisms through the analogy of the way an engineer approaches the diagnosis and repair of

a broken radio. Engineers typically understand systems holistically while the approach of a biologist is

characteristically reductionist. The reductionist approach to a malfunctioning radio is to isolate and count

radio’s components without fully understanding how they interact with one another as parts of a larger,

integrated system. The paper argues that biologists should follow the example of engineers in taking a

more integrative and systems-based approach: an understanding of how an entire system functions is

the key to identifying and diagnosing problems. The approach the paper advocates takes the form of

improved models and frameworks that enable a better understanding of the complex interactions that

characterize biological systems.

Newsholme, Philip. Mapping life’s reactions: a brief history of metabolic pathways and their regulation;

The Biochemist Volume 31, Issue 3, 2009. The article provides a historical review of discovery of metabolic

functions and assembling them intometabolic pathways. This period begins in the early 20th century with

a highlight of contributions made by German chemists such as Meyerhof and Krebs. The paper charts

advances in the understanding of metabolic regulation and the refinement of mathematically-grounded

methods for accurately and adequately modelingmetabolic pathways from the post-war era. Finally, it ex-

tends the account into the current timewith a description of the advent ofmetabolomics and the evolution

of systems biology.

Recommended online videos and podcasts

Milo, Ron. Lectures on “Cell biology by the numbers” The lectures, accompanying the book “Cell biology

by the numbers”, invite viewers to think about cells quantitatively. Ron Milo shows that knowing a few

important numbers (or looking them up in the BioNumbers database) and using them for rough estimates

gives an intuitive sense for how cells function!

TEDx talk “A sixth sense for understanding our cells” https://www.youtube.com/watch?v=JC7WnzM2Lsc

Full BioNumbers lectures on https://www.youtube.com/channel/UChCzuzoZp5NheAPWH5YoGWw

Lercher, Martin J., and Yanai, Itai. Night Science. Series of editorials in Genome Biology (Springer Na-

ture) 2019-2022, and podcast 2021-ongoing. The title, ”Night Science”, draws on a term coined by the

biologist Francois Jacob to characterize the significant parts of scientific research that occur “behind the

scenes”. This iteration on the original concept charts the decline of innovation and creative thinking in

https://www.youtube.com/watch?v=JC7WnzM2Lsc
https://www.youtube.com/channel/UChCzuzoZp5NheAPWH5YoGWw
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Science in favor of a focus on near-term results and financial gain. It also offers prescriptions for restoring

the creative spirit to science and revitalizing innovation.

Website: https://night-science.org/

Materials: https://www.biomedcentral.com/collections/night-science

Podcast on Spotify: https://open.spotify.com/show/6berzd2rX6rpJQ6CPnbOtI?si=2176cbb795f24c6a

Khan Academy. Free Math Courses. Khan Academy offers free math courses, including advanced topics

like differential equations, linear algebra, andmultivariable calculus. These courses feature video tutorials,

practice problems, and step-by-step solutions, making complex topics like systems of equations, vector

spaces, and partial derivatives easier to grasp. The lessons are self-paced and adaptable.

Website: https://www.khanacademy.org/

https://night-science.org/
https://www.biomedcentral.com/collections/night-science
https://open.spotify.com/show/6berzd2rX6rpJQ6CPnbOtI?si=2176cbb795f24c6a
https://www.khanacademy.org/
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Appendix A

Appendix “Cell metabolism”

A.1 Dynamics ofmetabolism: experimental evidence andmodel-

based explanations

The high-level of connectivity among reactions, together with the plurality of molecular level mechanisms

that can arise in enzyme-mediated reactions, gives metabolic systems the capacity to display rich dy-

namic behaviors [61, 90]. Here, we highlight some of the illustrative experimental observations on these

metabolic dynamics, and their possible model-based explanations.

A.1.1 Flux switching / regulation

We have introduced above the redox-based, electron flow view of metabolism. A common electron donor

in metabolism is glucose, while a common electron acceptor is oxygen together with the associated,

membrane-bound electron transport chain (ETC). The ensuing metabolic pathway linking glucose oxida-

tion to oxygen reduction is termed as ‘respiration’, resulting in formation of CO2 (from full oxidation of

glucose) and water (from reduction of oxygen, cf. Fig. ??). However, it is possible for cell metabolism to

stop the sequential oxidation of glucose (or other sugars) at an intermediate level. In this case, the ensuing

metabolism is termed as ‘fermentation’ due to production of partially oxidized carbon compounds such

as acetate and ethanol (Fig. A.1) [51].

One of the earliest observation onmetabolic dynamics is a shift frompure respiration into fermentation or

respiro-fermentation with changing conditions. This shift, known as contre-Pasteur, Warburg, or, Crabtree

effect, is described initially in yeast and mammalian cells, especially cancerous cells. The respiration to

fermentation shift happens under lack of electron acceptors or with increasing growth rate. While a

shift into fermentative pathways due to lack of electron acceptors can be intuitively understood as the

only route to sustain electron flow, a similar shift due to increased carbon availability or growth rate are

non-intuitive as they occur under the continued presence of strong electron acceptors such as oxygen.

A dominant concept to explain the switch to respiro-fermentationhas been the idea of ‘overflowmetabolism’.

It postulates that this switch should be seen as an overflow, arising due to limitations in respiration not

being sufficient in sustaining metabolic fluxes in the face of increasing substrate availability. The dynamic

regulation and origin of this respiro-fermentation switch is still a focus of significant systems biology re-

search. Hence, this topic is discussed further in other chapters of this book with several alternativemodels

presented for its underlying causes.

Itmust also benoted that, while respiro-fermentation switch is commonly referred to as ‘overflowmetabolism’

(due to excretion of fermentation products such as acetate, lactate and ethanol), the phenomenon of over-

flow, i.e. excretion of energy rich compounds is not limited to fermentation. Excretion of amino acids and
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`contre-effect Pasteur`
("Crabtree effect")
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(O2)
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(internal NAD+/NADH "neutrality")

Figure A.1: Respiration-fermentation switch – Cartoon representation of the respiration and fermentation
pathways. There is an observed switch of metabolic fluxes between these pathways, from full respiration
to fermentation or a combination of respiration and fermentation, as glucose levels (and consequently
growth rate) increases. It is postulated that this relates to a limitation in the respiration and ETC system,
but themolecular basis of the switch is not fully clearwith several, equally plausible hypotheses postulated.

vitamins seem particularly common, and it is not clear in these cases what type ofmetabolic flux switching

happens or how it happens.

Flux switching / regulation - flux sensors, branch point dynamics and dynamical flux regulation How

can we understand cells switching their metabolic fluxes with changing external or internal conditions.

As discussed above, one possibility is that cells alter the expression levels of their various enzymes, so to

achieve a re-distribution of fluxes (given that enzyme levels are directly involved in the determination of

fluxes, see Eq. (3.8)). This kind of enzyme-level regulation can bemediated through regulation of transcrip-

tion factors by specific signaling molecules, including metabolites. The latter case is explored in models

of central metabolism, and it was shown that fructose-1,6-bisphosphate could act as a ”flux sensor”, con-

veying information about the glycolytic flux onto key transcription factors regulating glycolytic enzymes.

While regulation of enzyme levels can alter flux levels, this type of regulation can be made more sensi-

tive if the coupling between enzyme and flux levels can be made more nonlinear. It has been shown that

such nonlinear coupling of flux and enzyme levels can arise at branching points in metabolism [59]. In

particular, branch points (as a metabolic motif) have been shown to give rise to ultrasensitivity - a sys-

tem dynamics feature that describes the situation when a given input to a system results in more than a

proportional change in its output. When enzymes at the two branches of a branching point have highly

differing affinities for the substrate (i.e. differentKm values, see Eq. (3.8)), then alterations of the maximal

rate of one enzyme with higher affinity to the substrate can result in a nonlinear effect on the flux into

the other branch of the branching point [59]. Thus, branching points can be one structural motif that can

result in switch-like, nonlinear flux changes within metabolism.

It is clear that changing of enzyme levels can regulate fluxes, and can do so in an abrupt, switch-like fashion

through structural motifs such as branching points. However, regulation of enzyme levels via transcription

factors is found to not capture all observed flux changes in experiments. This suggests that cells might

be able to regulate fluxes by other means as well. Recently, one such possible mechanisms is proposed to

be the co-substrate pools [65]. For example, in a metabolic branch point, where the two branches involve

different co-substrates, regulating the pool sizes of those two co-substrates can induce flux switching at

the branch point.
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A.1.2 Bistability

Bistability is introduced above, and refers to a dynamical system having three steady state, two of which

are dynamically stable and can be attained by the system. When bistable systems exist in cell metabolism,

their combination with population level variance (i.e. noise) in enzyme levels or activity can lead to bimodal

distribution of metabolic fluxes (i.e phenotypes) in isogenic population of cells. In this context, it is notable

that significant level of variance is seen in several metabolic parameters, including sugar uptake, ATP

levels, and expression levels of the enzymes involved in glycolysis and the TCA cycle.

Bistability inmetabolic responses is experimentally implicated in the context of respiration to fermentation

switch, and when carbon metabolism is initiated on glucose or when it switches from glucose to other

carbon sources. In particular, the latter studies found sub-populations, within isogenic populations (i.e. no

mutations), that show different metabolic responses to changing conditions. Experiments with isotope

labeled carbon indicated that these sub-populations emerged at the time of the shift in carbon source is

induced, i.e. in response to changing conditions, and in a manner dependent on the concentration of the

new carbon source. This suggests that the metabolic system implements bistable dynamics, such that

changes in external glucose concentrations can lead some cells to shift to a new metabolic steady-state

flux distribution, while others remain at their original steady state.

Bistability - negative feedback via substrate inhibition There have beenmany theoretical studies indicat-

ing the possibility of bistability within simple enzymatic reaction systems. Bistability is shown to be possible

even in a single enzymatic reaction, involving allosteric regulation, or in a system of few coupled enzymatic

reactions. A particular ‘reaction motif’ that has been studied extensively is a two-enzyme cyclic reaction

system, where a substrate is converted into a product and then back again, with both forward and back-

ward reactions usually involving different enzymes (see Fig. A.2). It is common, in these models, that the

enzyme catalyzing the forward reaction is assumed to be regulated by substrate inhibition, or by substrate

inhibition coupled with product activation. Thismotif is found in several locations withinmetabolism, par-

ticularly around dehydrogenases, such as lactate dehydrogenase, and kinase/phosphatase pairs, such as

those involved around fructose-6-phosphate, that can convert different metabolites back and forth, using

the NAD+/NADH or ADP/ATP pairs as reaction partners.

These theoretical findings are supported by several in vitro re-constitution experiments that confirmed

bistability experimentally using enzyme preparations of pyruvate kinase, lactate dehydrogenase, and isoc-

itrate dehydrogenase enzymes and their corresponding partners resulting in cyclic reaction schemes.

It is notable thatmanyof thesemodels incorporatednegative feedback via empirical alteration of aMichaelis-

Menten type reaction rate model (i.e. one of the approaches we mentioned in the paragraph above on

allosteric rate models, see 3.12). This raises the question about the actual biochemical mechanisms that

can lead to bistability in a enzyme-mediated reaction model. In a recent study, it was shown that the pres-

ence of multiple enzyme-substrate complexes, as would be the case in an enzyme with multiple substrate

binding sites, creates a potential in the reaction system for bistability [80] (see Fig. A.2). Thus, multi-site

enzymes could be points ofmultistability generation inmetabolic systems and any largermodels featuring

such enzymes or inherently including feedback regulation can demonstrate bistability.

A.1.3 Oscillations

Sustained and damped oscillations are common dynamics in nonlinear systems and can arise from a com-

bination of positive and negative feedbacks [86]. In metabolic systems both types of oscillations are seen

in vivo or in situ, with cell extracts, where concentrations of all observed metabolites are found to oscillate

over time. In the case of experiments involving cell extracts, these metabolite oscillations had a period

ranging from few to tens of minutes. In these experiments, oscillations are verified not to be due to arti-

ficial changes in ATP dynamics arising in the cell extract preparations, and oscillations could be entrained

by controlled glucose additions. This shows that there is an inherent ability for oscillatory dynamics in the

underpinning enzymatic reaction system. This ability is suggested to be linked to the enzymephosphofruc-
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(A) Allosteric enzyme model
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Figure A.2: Cartoon representations and brief analysis results of two enzymatic models capable of bista-
bility. (A) Allosteric enzyme model. The first model considers an enzyme that can convert a substrate (S)
into a product (P) and that is allosterically regulated by its own substrate. This regulation takes the form
of inhibition and is implemented mathematically in the rate of the enzyme - black colored equation. This
model results in a nonlinear curve for the relation between rate of production of P at steady state and
the total concentration of substrate and product in the system, Stot (black curve on the top right panel).
The intersections of this curve with the linear curve for the relation between rate of consumption of P at
steady state and Stot (red curve on top right panel). We can see that the model is capable of resulting in
three intersections, i.e. three steady states of the system. (B) Multi-site enzymemodel. The second model
considers instead of allostery, an enzyme that binds multiple substrates. This results in several enzyme-
substrate complexes depending on the number of binding sites - 3 sites in themodel shown. The resulting
model can be solved for the steady state values of flux through each enzyme complex against Stot (shown
in red and blue colors on the bottom right panel). The sum of these gives the rate of production of P at
steady state (black curve on the bottom right panel). This model can also result in a non-linear production
curve and three steady states. For further discussion of these models, see relevant citations.

tokinase (PFK), which catalyzes the phosphorylation of fructose-6-phosphate into fructose-diphosphate in

the glycolysis pathway and is allosterically regulated.

In vivo, oscillatory dynamics are observed to occur within the central carbon pathways and displaying a

phase of tens of minutes up to several hours. Metabolic oscillations were demonstrated at single cell

level and are found to be autonomous of, but coupled with, the cell cycle oscillations. Additional stud-

ies across cell populations found that cells can synchronize metabolic oscillations under some conditions,

and proposed several possible mediators for such synchronization, including acetaldehyde, hydrogen sul-

phide, carbon dioxide, and media pH.

Oscillations - intertwined negative and positive feedbacks Several mathematical models of the reaction

catalyzed by the enzyme phosphofructokinase (PFK) in the glycolysis pathway has shown that oscillations
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are possible to arise from the dynamics of this reaction alone. These models incorporate some of the

observed allosteric regulation of PFK both by its substrates and products, resulting in intertwined negative

and positive feedbacks.

It must be noted that some of these models, and others, use the same basic models that show bistable

behavior (as discussed above) and extend them with in- and out-fluxes of involved metabolites, to display

oscillations. While these theoretical demonstrations of specific enzymatic schemes leading to oscillations

have not been explored in detail experimentally, metabolic oscillations are readily observed both in vivo

and in vitro, as discussed above. Models, involving some of these proposed synchronization molecules,

were also developed and could reproduce experimental findings.

A.2 Derivation of enzymatic reaction rate models

Enzymatic reactions can be modeled using a mechanistic model of enzyme binding and catalysis. The

general approach is to develop a ‘cartoon’ model of the physical steps in a reaction. This cartoon model

usually takes the form of a series of reactions, involving either binding / unbinding events or chemical

conversions. Once a model is developed one can write down ordinary differential equations (ODEs) based

on these reactions, and assuming each reaction to be governed bymass action kinetics (see Section 3.2.3).

The ODEs can be simplified using certain assumptions, or sometimes just kept as is, before applying a

quasi steady-state assumption (which states the enzyme-substrate complexes to be in steady-state). This

assumption would allow us to solve the ODE for the enzyme-substrate complex(es) at steady-state. We

then enter these solutions into the ODE for the product, so to obtain a reduced system and a specific rate

equation for product formation. This approach forms the basis of obtaining simplified rate equations, that

is, a reduced ODE for the rate of product formation, for enzymatic reactions.

A.2.1 Derivation of the single substrate, irreversible rate equation

This is the most generic model of an enzymatic reaction that has been developed/studied by Leonor

Michaelis (1875 – 1947) andMaud LeonoraMenten (1879 – 1960), and their contemporaries. It involves the

following reaction scheme, where a substrate binds to an enzyme to form a enzyme-substrate complex,

gets converted into a product, and then released from the enzyme:

S + E
k1−−⇀↽−−k2

ES
k3−−⇀↽−−k4

EP
k5−−⇀↽−−k6

P + E. (A.1)

We can simplify this reaction system by assuming that (1) the transition between enzyme complexes ES
and EP are instantaneous and are therefore considered as a single entity, e.g. ES, and (2) that the release
of product and enzyme is irreversible. The scheme now becomes:

S + E
k1−−⇀↽−−k2

ES k3−−→ P + E. (A.2)

We can now write a set of ODEs to describe the dynamics of this reaction system - using mass action

kinetics. The ODEs are as follows:

ds
dt = −s · e · k1 + es · k2

de
dt = −s · e · k1 + es · (k2 + k3)

dc
dt = s · e · k1 − es · (k2 + k3)

dp
dt = es · k3

where we used the small letter notation to represent the concentration of each species, e.g. “e” for the
concentration of the enzyme, E, and “es” for the concentration of the enzyme-substrate complex, ES. At
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this stage, we can see that if we can formulate ”es” as a function of “s”, we can provide a simpler rate

model that relates production of the product, P, to the level of the substrate, S. To achieve this we make

several additional assumptions. First, we will assume that the total level of the enzyme is conserved, i.e.

e + es = C, where C is a constant (referred to as εtot in the main text). This assumption effectively means

that total enzyme levels are fixed in the timescale of reaction dynamics. This assumption already allows

us to re-define the ODEs and reduce their number to three from four - since, we can now express e, as a
function of es. The new ODEs look like this:

ds
dt = −s · (C − es) · k1 + es · k2

des
dt = s · (C − es) · k1 − es · (k2 + k3)

dp
dt = es · k3

Second, we will assume that the binding/unbinding of substrate to the enzyme happens much faster than

release of product from the enzyme-substrate complex. This assumption, together with the additional

assumption that enzyme levels are much lower than substrate levels, allows us to consider the enzyme-

substrate complex to remain constant throughout the reaction. In other words, we consider the enzyme-

substrate complex to be in a ‘quasi steady-state’. This allows us to solve the second ODE from above for

steady-state:

des
dt = 0 = s · (C − es) · k1 − es · (k2 + k3)

es · (k2 + k3) = s · (C − es) · k1

es · (k2 + k3) = sC · k1 − s · es · k1

es · (k2 + k3 + s · k1) = s · C · k1

es = s · C · k1

(k2 + k3 + s · k1)

Wehave now an expression for “es”, which we can simply introduce to theODE system. We have effectively

reduced our ODE system from a three variable system into a two variable one:

ds
dt = −s · (C − s · C · k1

(k2 + k3 + s · k1) )k1 + s · C · k1

(k2 + k3 + s · k1) · k2

dp
dt = s · C · k1

(k2 + k3 + s · k1) · k3

The second ODE describes the rate of change in product, P, as a function of substrate, S. It is a rate model

for this enzymatic reaction, and holds under the assumptions wemade in its derivation. It is known as the

Michaelis-Menten kinetic rate model and is commonly expressed as:

v = s · εtot · kcat

KM + s

where εtot is equal to C and represents total enzyme concentration, kcat is equal to k3 and is known as the

maximal catalytic rate of an enzyme, andKM is equal to (k2 + k3)/k1 and is known as the Michaelis-Menten

coefficient of the enzyme. Plotting this rate against increasing substrate concentration would show that

the rate is a ‘saturating function’ of S, i.e. the rate approaches a threshold point - given by vmax = εtot ·k3 as

substrate increases. The enzymatic nature of the reaction introduces a limiting factor on the reaction rate!

This saddle point is actually a underpinning point for some of the constraint-based methods discussed in

this book.

A.2.2 Derivation of a two substrate, irreversible rate equation

See Problem 3.2
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A.2.3 Derivation of the single substrate, reversible rate equation

We now return to the reaction scheme we considered in the above section:

S + E
k1−−⇀↽−−k2

ES
k3−−⇀↽−−k4

EP
k5−−⇀↽−−k6

P + E.

The corresponding ODE system, written only for the key variables ES, EP, and P, is as follows:

des
dt = e · s · k1 + ep · k4 − es · (k2 + k3)

dep
dt = e · p · k6 + es · k3 − ep · (k4 + k5)

dp
dt = ep · k5 − e · p · k6

As above, we will now introduce the assumptions of (1) total enzyme being conserved, and (2) the quasi

steady-state, but this time for both of the enzyme-substrate and enzyme-product complexes. We will

denote total enzyme concentration as C, as before, and use these two assumptions to express es and ep

in terms of each other, and the other variables. Let us first proceed with es;

des
dt = 0 = e · s · k1 + ep · k4 − es · (k2 + k3)

es · (k2 + k3) = (C − es− ep) · s · k1 + ep · k4

es · (k2 + k3 + s · k1) = (C − ep) · s · k1 + ep · k4

es = C · s · k1 + ep · (k4 − s · k1)
(k2 + k3 + s · k1)

We carry the same derivation for ep;

dep
dt = 0 = e · p · k6 + es · k3 − ep · (k4 + k5)

ep · (k4 + k5) = (C − es− ep) · p · k6 + es · k3

ep · (k4 + k5 + p · k6) = (C − es) · p · k6 + es · k3

ep = C · p · k6 + es · (k3 − p · k6)
(k4 + k5 + p · k6)

We see that we have a symmetry in the expressions for es and ep, in that the two expressions can be de-

rived from each other by a replacement of variables (k1, k4, k2, s) → (k6, k3, k5, p). Keeping this symmetry
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in mind, we now attempt to eliminate one of the complexes from the equation for the other:

ep · (k4 + k5 + p · k6) = C · p · k6 + es · (k3 − p · k6)

ep · (k4 + k5 + p · k6) = C · p · k6 + C · s · k1 + ep · (k4 − s · k1)
(k2 + k3 + s · k1) · (k3 − p · k6)

ep · (k4 + k5 + p · k6) = C · p · k6 + C · s · k1k3 − C · s · k1 · p · k6 + ep · (k4 − s · k1) · (k3 − p · k6)
(k2 + k3 + s · k1)

ep · (k4 + k5 + p · k6) · (k2 + k3 + s · k1) = C · p · k6 · (k2 + k3 + s · k1) + C · s · k1k3 − C · s · k1 · p · k6+

ep · (k4 − s · k1) · (k3 − p · k6)

ep · (k4 + k5 + p · k6) · (k2 + k3 + s · k1) = C · p · k6k2 + C · p · k6k3 + C · s · k1k3 + ep · (k4 − s · k1) · (k3 − p · k6)

ep · ((k4 + k5 + p · k6) · (k2 + k3 + s · k1) − (k4 − s · k1) · (k3 − p · k6)) = C · p · k6k2 + C · p · k6k3 + C · s · k1k3

ep = C · p · k6 · (k2 + k3) + C · s · k1k3

(k4 + k5 + p · k6) · (k2 + k3 + s · k1) − (k4 − s · k1) · (k3 − p · k6)

ep = C · p · (k6k2 + k6k3) + C · s · k1k3

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

Note that, in the above equation set, we have dropped the dot notation frommultiplication of parameters

for simplicity of expression. Based on the above argument of symmetry, or by following the same steps

for “es”, we can show that we will have a similar expression with different parameters in the numerator:

es = C · s · (k1k5 + k1k4) + C · p · k6k4

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

With these expressions for es and ep at hand, we can now derive an expression for e:

e = C − es− ep

e = C − C · s · (k1k5 + k1k4) + C · p · k6k4

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

− C · p · (k6k2 + k6k3) + C · s · k1k3

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

e = C − C · s · (k1k3 + k1k5 + k1k4) + p · (k6k2 + k6k3 + k6k4)
(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

e = C · k3k5 + k2k5 + k2k4

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)

We are now ready to substitute all these expressions into the ODE for the product, so to obtain our rate

equation:

dp
dt = C · p · (k6k2 + k6k3) + C · s · k1k3

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4) · k5

− C · k3k5 + k2k5 + k2k4

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4) · p · k6

dp
dt = C · s · k1k3k5 − p · k2k4k6

(k4k2 + k5k2 + k5k3 + s · k1k3 + s · k1k4 + s · k1k5 + p · k6k2 + p · k6k3 + p · k6k4)
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We can somewhat simplify this expression by defining the following composite rate constants:

KS = k3k5 + k2k5 + k2k4

k1 · (k3 + k4 + k5)

KP = k3k5 + k2k5 + k2k4

k6 · (k2 + k3 + k4)

k+
cat = k3k5

k3 + k4 + k5

k−
cat = k2k4

k2 + k3 + k4

and substituting them into the rate expression from above, to get:

dp
dt = v = C · k

+
cat
KS

·

s− p ·
k

−
cat

KP
k

+
cat

KS

1 + p
KP

+ s
KS

This reaction rate is referred to as the Haldane kinetic rate equation, named after Jack Burden Sanderson

Haldane (5 November 1892 – 1 December 1964). It can be re-expressed by recognizing the fact that the

fraction entering as amultiplier for the product concentration is actually equivalent to the equilibrium con-

stant of the reaction scheme drawn above, at the beginning of this section, when we assume the reaction

proceeding in the forward direction, i.e. towards product formation:

k−
cat

KP

k+
cat

KS

= k2k4k6

k1k3k5
= 1/Keq

This allows us to re-express the Haldane rate equation as:

v = C · k+
cat · s/KS

1 + p
KP

+ s
KS

· (1 − p/s

Keq
)

This re-arranged expression is interesting because we can recognize that the last term is related to the

thermodynamic Gibbs free energy of the reaction, allowing us to finally derive:

v = C · k+
cat · s/KS

1 + p/KP + s/KS
· (1 − e∆G′/RT )

where∆rG
′ is theGibbs free energy of reaction for given substrate andproduct levels, considering forward

direction, andR and T stand for the gas constant and temperature respectively. This rate equation shows

that forward reaction rate will be independent of thermodynamics, when the reaction free energy is highly

negative (i.e. thermodynamically highly favored), but the reaction rate will decrease as Gibbs free energy

gets close to zero.

A second, faster derivation of this rate equation is found by noting that the ODEs for des
dt

and dep
dt

are linear

in e, es and ep, and can therefore be solved with linear matrix algebra. One may write:sk1 −(k2 + k3) k4

pk6 k3 −(k4 + k5)
1 1 1


 e

es

ep

 =

0
0
C

 , (A.3)

where the first two rows of the matrix correspond to des
dt

= 0 and dep
dt

= 0, and the last row represents

conservation of total enzyme concentration. The equilibrium concentrations of e, es and ep are then found

by left-multiplying both sides of the equation by the inverse of this matrix. The obtained results are the

same as given above.
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A.2.4 Derivation of two substrate, reversible rate equation for simultane-

ous binding of substrates

The two-substrate case is described by the following reaction scheme:

S1 + S2 + E
k1−−⇀↽−−k2

ES1S2
k3−−⇀↽−−k4

EP1P2
k5−−⇀↽−−k6

P1 + P2 + E,

Where we assume that binding and unbinding of the substrates and products occurs simultaneously. Pro-

ceeding as above we let e, es1s2, ep1p2, s1, s2, p1 and p2 denote the concentrations of E, ES1S2, EP1P2, S1,

S2, P1 and P2 respectively. The differential equations for es1s2, ep1p2 and p1 + p2 are:

des1s2

dt = e · s1 · s2 · k1 + ep1p2 · k4 − es1s2 · (k2 + k3)

dep1p2

dt = e · p1 · p2 · k6 + es1s2 · k3 − ep1p2 · (k4 + k5)

d(p1 + p2)
dt = ep1p2 · k5 − e · p1 · p2 · k6.

Proceeding as in the single substrate case, we note that the the ODEs for des1s2
dt

and dep1p2
dt

are linear in e,

es1s2 and ep1p2, and that the total enzyme concentration e+ es1s2 + ep1p2 is constant, denoted C.s1s2k1 −(k2 + k3) k4

p1p2k6 k3 −(k4 + k5)
1 1 1


 e

es1s2

ep1p2

 =

0
0
C

 . (A.4)

We therefore see that the results for the two-substrate case are the same as for the single substrate

case, with s replaced by s1s2 and p replaced by p1p2. This result is dependent on the assumption that

binding/unbinding of substrates/products occurs simultaneously.

A.3 Example metabolic models

A.3.1 A simple model illustrating product activation

This model demonstrates that allosteric regulation of an enzymatic reaction by its product can create a

bistable system. In this simple example, we consider enzymatic production of a metabolite (labelled ’x’)

and its non-enzymatic consumption. It is assumed that the metabolite allosterically regulates the enzyme

that produces it. The listing uses the Antimony format [507] which can be easily converted into SBML [232].

An online converter can be found at https://sys-bio.github.io/makesbml/

1 // The following model admits three steady-states at:

2 // x = 0.325, x = 1.671, and x = 0.873

3 // The first reaction step `-> x' uses a rate law that models

4 // positive feedback via the product x. The constant 0.2

5 // is to ensure that the lower steady-state is non-zero.

6 // The statement `ext Xo' indicates that the species Xo is fixed.

7

8 ext Xo

9 Xo -> x; (vo*x^n)/(1 + x^n) + 0.2

10 x ->; k1*x

11

12 k1 = 0.65

13 n = 4; vo = 1

https://sys-bio.github.io/makesbml/
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14 x = 0

Listing A.1: Model illustrating bistability

1 # Equivalent model as a differential equation in python:

2 def ode (x, t):

3 vo = 1

4 n = 4

5 k1 = 0.65

6 return [((vo*x**n)/(1 + x**n) + 0.2) - k1*x]

Listing A.2: Equivalent model as a differential equation in python
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Appendix B

Appendix “Optimization of

metabolic states”

B.1 A model of E. coli’s central metabolism

B.1.1 Tables of reactions

Metabolite name Biomass stoichiometric coefficient

AcCoA -41
ADP 547

2-oxoglutarate -14
ATP -547
H2O -547
Pi 547
CO2 2
CoA 41
DHAP -5
G6P -4
NAD+ 178
NADH -178
NH3 -139

2-oxoglutarateAcetate -24
PEP -32

Pyruvateuvate -38
E4P -5
R5P -13

Table B.1: Stoichiometry of biomass reaction – R70

B.1.2 Kinetic parameter tables

307
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Reaction ID EC number Reaction name Formula

R1 2.7.1.69 pts Glucose + PEP
 G6P + Pyruvateuvate
R2r 5.3.1.9 pgi G6P
 F6P
R3 2.7.1.11 pfk F6P + ATP
 FBP + ADP
R4 3.1.3.11 fbp FBP + H2O
 F6P + Pi

R5r 4.1.2.13 ald FBP
 DHAP + G3P
R6r 5.3.1.1 tim G3P
 DHAP
R7ra 1.2.1.12 gap G3P + NAD+ + Pi 
 BPG + NADH
R7rb 2.7.2.3 pgk BPG + ADP
 3PG + ATP
R7rc 5.4.2.11 / 5.4.2.12 pgm 3PG
 2PG
R8r 4.2.1.11 pgh 2PG
 PEP
R9 2.7.1.40 pyk PEP + ADP
 Pyruvateuvate + ATP
RR9 2.7.9.2 pps Pyruvateuvate + 2 ATP
 PEP + 2 ADP + Pi

Table B.2: Glycolysis

Reaction ID EC number Reaction name Formula

R10a 1.1.1.49 zwf G6P + NAD+ 
 6PGL + NADH
R10b 3.1.1.31 glh 6PGL
 6PGC
R10c 1.1.1.44 pgd 6PGC + NAD+ 
 NADH + CO2 + Ru5P
R11r 5.1.3.1 rpe Ru5P
 X5P
R12r 5.3.1.6 rpi Ru5P
 R5P
R13r 2.2.1.1 txt1 R5P + X5P
 S7P + G3P
R14r 2.2.1.2 tal G3P + S7P
 E4P + F6P
R15r 2.2.1.1 txt2 E4P + X5P
 G3P + F6P
R60 4.2.1.12 edd 6PGC
 KDPG
R61r 4.1.2.14 eda KDPG
 G3P + Pyruvateuvate

Table B.3: Pentose Phosphate Pathway

Reaction ID EC number Reaction name Formula

R20 2.3.1.54 pfl Pyruvateuvate + CoA
 AcCoA + Formate
R21 1.2.4.1 / 2.3.1.12 pdh Pyruvateuvate + NAD+ + CoA
 AcCoA + CO2 + NADH
R22 2.3.3.1 csn 2-oxoglutarateacetate + AcCoA
 Citrate + CoA
R23r 4.2.1.3 acn Citrate
 iso-Citrate
R24 1.1.1.41 icd iso-Citrate + NAD+ 
 2-oxoglutarate + NADH + CO2
R25 1.2.4.2 kgd 2-oxoglutarate + NAD+ + CoA
 NADH + Succinateinyl-CoA + CO2
R26r 6.2.1.5 scs Succinateinyl-CoA + ADP + Pi 
 Succinateinate + ATP + CoA
R27 1.3.5.1 sdh Succinateinate + ADP + O2[e] + Pi 
 Fumarate + ATP
R27b 1.3.5.4 frd Fumarate + NADH
 Succinateinate + NAD+

R28r 4.2.1.2 fum Fumarate
Malate
R29r 1.1.1.37 mdh Malate + NAD+ 
 2-oxoglutarateacetate + NADH

Table B.4: TCA Cycle

Reaction ID EC number Reaction name Formula

R40 4.1.1.31 ppc PEP + CO2 
 2-oxoglutarateacetate + Pi

R41 1.1.1.38 me Malate + NAD+ 
 Pyruvateuvate + NADH + CO2
R42 4.1.1.49 ppck 2-oxoglutarateacetate + ATP
 PEP + ADP + CO2

Table B.5: Anapleurotic Reactions

Reaction ID EC number Reaction name Formula

R53r 1.1.1.27 ldh Pyruvateuvate + NADH
 Lactate + NAD+

R54ra 1.2.1.10 ada AcCoA + NADH
 Acetaldehyde + NAD+ + CoA
R54rb 1.1.1.1 adh Acetaldehyde + NADH
 ETOH + NAD+

R55a 2.3.1.8 pta AcCoA + Pi 
 Acetyl-P + CoA
R55b 2.7.2.1 ack Acetyl-P + ADP
 Acetate + ATP

Table B.6: Redox-associated reactions
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Reaction ID Reaction name Formula

R80 oxphos NADH + 2 ADP + 0.5 O2[e] + 2 Pi 
 NAD+ + 2 ATP + 3 H2O
R82 atpmain ATP + H2O
 ADP + Pi + ATPmain

Table B.7: Oxidative phosphorylation

Reaction ID Reaction name Formula

R90 exetoh ETOH
 ETOH[e]
R91 exace Acetate
 Acetate[e]
R93 exNH3 NH3[e]
 NH3
R94 exlac Lactate
 Lactate[e]
R95 exsuc Succinateinate
 Succinateinate[e]
R96 exfor Formate
 Formate[e]
R97r exCO2 CO2 
 CO2[e]

Table B.8: Membrane Transport Reactions
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Reaction ID k+
cat [1/s] Keq [unitless] Enzyme molecular weight [Da]

R1 1.0E+02 N/A 2.6E+05
R10a 2.4E+02 N/A 5.6E+04
R10b 4.1E+02 N/A 3.6E+04
R10c 1.1E+02 N/A 1.0E+05
R11r 1.3E+02 2.3E+00 2.5E+04
R12r 1.4E+03 2.3E+00 1.9E+04
R13r 4.6E+01 3.7E+00 7.3E+04
R14r 1.7E+01 9.0E-01 3.5E+04
R15r 7.5E+01 3.8E+01 7.3E+04
R20 4.8E+03 N/A 8.5E+04
R21 3.8E+01 N/A 2.8E+05
R22 3.6E+02 N/A 9.6E+04
R23r 3.3E+01 7.4E-02 9.6E+04
R24 1.1E+02 N/A 4.6E+04
R25 1.5E+02 N/A 1.2E+06
R26r 8.9E+01 5.2E-01 7.1E+04
R27 7.8E+01 N/A 7.9E+05
R27b 1.8E+02 N/A 1.8E+05
R28r 2.8E+02 4.7E+00 6.0E+04
R29r 2.1E+02 6.1E-05 3.2E+04
R2r 3.2E+02 5.1E-01 6.2E+04
R3 1.1E+02 N/A 1.4E+05
R4 2.5E+01 N/A 3.7E+04
R40 1.2E+02 N/A 2.0E+05
R41 7.6E+01 N/A 6.3E+04
R42 5.1E+01 N/A 6.0E+04
R53r 1.4E+02 2.1E+04 3.7E+04
R54ra 3.5E-01 2.3E-03 9.6E+04
R54rb 3.2E+02 2.8E+03 9.6E+04
R55a 9.1E+01 N/A 7.7E+04
R55b 5.9E+01 N/A 4.3E+04
R5r 8.0E+00 3.0E-04 3.9E+04
R60 2.5E+02 N/A 6.5E+04
R61r 8.0E+01 9.6E-03 2.2E+04
R6r 7.8E+03 1.1E+01 5.4E+04
R70 9.9E+01 N/A 6.0E+04
R7ra 2.3E+02 8.8E-02 3.6E+04
R7rb 3.9E+02 7.3E+02 4.1E+04
R7rc 5.3E+01 1.6E-01 2.9E+04
R80 4.0E+06 N/A 9.1E+05
R82 1.8E+02 N/A 6.0E+04
R8r 2.1E+02 3.5E+00 4.6E+04
R9 5.1E+02 N/A 5.0E+04
R90 1.0E+02 N/A N/A
R91 1.0E+02 N/A 5.9E+04
R93 1.0E+02 N/A 4.5E+04
R94 1.0E+02 N/A 5.9E+04
R95 1.0E+02 N/A 4.5E+04
R96 1.0E+02 N/A 3.1E+04
R97r 1.0E+02 N/A N/A
RR9 1.3E+01 N/A 8.7E+04

Table B.9: Kinetic parameters associated with reactions
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Reaction ID Metabolite name KM [mM]

R1 G6P 0.10173498
R1 Glucose 0.11626023
R1 PEP 0.098294607
R1 Pyruvate 0.10173498
R10a G6P 0.31390635
R10a 6PGL 0.12873433
R10a NAD+ 0.86322771
R10a NADH 0.12873433
R10b 6PGL 0.16825514
R10b 6PGC 0.059433547
R10c CO2 0.062614572
R10c 6PGC 0.10133236
R10c Ru5P 0.062614572
R10c NAD+ 0.059104496
R10c NADH 0.062614572
R11r Ru5P 0.087822018
R11r X5P 0.11386666
R12r R5P 1.2472893
R12r Ru5P 0.55814248
R13r G3P 1.2270802
R13r R5P 0.97227973
R13r S7P 2.1101234
R13r X5P 0.1567701
R14r E4P 0.17515892
R14r F6P 0.88809327
R14r G3P 0.57795789
R14r S7P 0.20642087
R15r E4P 0.093367041
R15r F6P 0.73697349
R15r G3P 1.2697442
R15r X5P 0.15150254
R20 AcCoA 0.035199023
R20 CoA 0.016796243
R20 Formate 6.3475273
R20 Pyruvate 2.1802383
R21 AcCoA 0.15894089
R21 CO2 0.15894089
R21 CoA 0.06291647
R21 Pyruvate 0.29067982
R21 NAD+ 0.06291647
R21 NADH 0.15894089
R22 AcCoA 0.086650189
R22 Citrate 0.07557239
R22 CoA 0.07557239
R22 2-oxoglutarate 0.028686021
R23r Citrate 3.4864698
R23r iso-Citrate 2.4203186
R24 2-oxoglutarate 0.48256956
R24 CO2 2.0223528
R24 iso-Citrate 0.022669351

Table B.10: Michaelis constants – part I
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Reaction ID Metabolite name KM [mM]

R24 NAD+ 1.0645761
R24 NADH 0.011912136
R25 2-oxoglutarate 0.06702331
R25 CO2 0.10790898
R25 CoA 0.092670691
R25 Succinyl-CoA 0.10790898
R25 NAD+ 0.092670691
R25 NADH 0.10790898
R26r CoA 0.0073087434
R26r Succinate 0.23699996
R26r Succinyl-CoA 0.010491808
R26r ADP 0.056003086
R26r ATP 0.081214311
R27 Fumarate 0.081233216
R27 O2[e] 0.37055218
R27 Succinate 0.075580976
R27 ADP 0.37055218
R27 ATP 0.026986753
R27b Fumarate 0.020134856
R27b Succinate 0.20543726
R27b NAD+ 0.043142381
R27b NADH 0.23179064
R28r Fumarate 0.31389369
R28r Malate 0.61515013
R29r Malate 3.1896955
R29r 2-oxoglutarate 0.02826558
R29r NAD+ 0.45965456
R29r NADH 0.032069119
R2r F6P 0.16239803
R2r G6P 0.27279661
R3 F6P 0.11627167
R3 FBP 0.11341715
R3 ADP 0.11341715
R3 ATP 0.14095742
R4 F6P 0.170733
R4 FBP 0.016114823
R40 CO2 0.1145046
R40 2-oxoglutarate 0.042589638
R40 PEP 0.3637061
R41 CO2 0.088484867
R41 Malate 0.36140168
R41 Pyruvate 0.088484867
R41 NAD+ 0.069121414
R41 NADH 0.088484867
R42 CO2 5.2104037
R42 2-oxoglutarate 0.57097592
R42 PEP 0.064276432
R42 ADP 0.048429688
R42 ATP 0.074986177
R53r LACTATE 0.5173743
R53r Pyruvate 0.019328364

Table B.11: Michaelis constants – part II
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Reaction ID Metabolite name KM [mM]

R53r NAD+ 0.51737436
R53r NADH 0.019328362
R54ra AcCoA 0.024178638
R54ra Acetaldehyde 1.8017317
R54ra CoA 0.0078602485
R54ra NAD+ 0.041481191
R54ra NADH 0.11298473
R54rb Acetaldehyde 0.059298483
R54rb ETOH 5.4946439
R54rb NAD+ 0.16863838
R54rb NADH 0.059298483
R55a AcCoA 0.042439428
R55a Acetyl-P 0.31264297
R55a CoA 0.085984844
R55b Acetate 3.4359883
R55b Acetyl-P 0.15416707
R55b ADP 0.40208482
R55b ATP 0.07135368
R5r DHAP 0.078151432
R5r FBP 0.20436478
R5r G3P 0.078151432
R60 6PGC 0.043395965
R60 KDPG 0.14959596
R61r G3P 0.0014648186
R61r KDPG 0.56077905
R61r Pyruvate 0.0014648186
R6r DHAP 0.074991868
R6r G3P 0.74464775
R70 AcCoA 0.46201504
R70 2-oxoglutarate 0.35155923
R70 BIOMASS 0.099775582
R70 CO2 0.099551667
R70 CoA 0.89124067
R70 E4P 0.01443632
R70 G6P 4.309878
R70 NH3 0.01514272
R70 2-oxoglutarate 0.0067236384
R70 PEP 0.16894701
R70 Pyruvate 0.31853464
R70 R5P 0.8805853
R70 ADP 0.029260067
R70 ATP 0.34176271
R70 NAD+ 1.431486
R70 NADH 0.091276358
R7ra DPG 0.057569553
R7ra G3P 0.68673903
R7ra NAD+ 0.0557564
R7ra NADH 0.057569553
R7rb DPG 0.042552917
R7rb 3PG 0.23500152
R7rb ADP 0.042552917

Table B.12: Michaelis constants – part III
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Reaction ID Metabolite name KM [mM]

R7rb ATP 0.23500152
R7rc 3PG 0.13245863
R7rc 2PG 0.075495268
R80 O2[e] 0.11646461
R80 ADP 0.13564006
R80 ATP 0.073724532
R80 NAD+ 0.085862991
R80 NADH 0.11646461
R82 ATPmain 0.13004037
R82 ADP 0.13004037
R82 ATP 0.076899197
R8r PEP 0.13067264
R8r 2PG 0.1083616
R9 PEP 0.2914003
R9 Pyruvate 0.047641018
R9 ADP 0.21836598
R9 ATP 8.4531988
R90 ETOH 0.099929218
R90 ETOH[e] 0.10007083
R91 Acetate 0.099946203
R91 Acetate[e] 0.10005383
R93 NH3 0.099854971
R93 NH3[e] 0.10014524
R94 Lactate 0.099963433
R94 Lactate[e] 0.10003658
R95 Succinate 0.099985447
R95 Succinate[e] 0.10001456
R96 Formate 0.099938862
R96 Formate[e] 0.10006118
R97r CO2 0.099946772
R97r CO2[e] 0.10005326
RR9 PEP 0.093447325
RR9 Pyruvate 0.086415071
RR9 ADP 0.087324025
RR9 ATP 0.035012678

Table B.13: Michaelis constants – part IV



Appendix C

Appendix “Strategies for cell size

control”

C.1 Equations for birth size

Here we derive the dynamic equations of the birth size qi
0 across generations (indexed by i) in the discrete-

time formalism. We define 〈q0〉α as the average value of q0, and the log size deviation δqi
0 := qi

0 − 〈q0〉α.

The dynamics for the log-size deviation takes the form

δqi+1
0 = g(δqi

0, α) + ζi(δqi
0, α) , (C.1)

where ζi(δqi
0, α) is a random variable with zero mean. This equation has the same degree of general-

ity of Eq. (13.8) and can express any arbitrary division control model (or equivalently any shapes of the

hazard rate function). In order to make further mathematical (and biological) progress, we need to sim-

plify the equation and make the comparison with data possible. There are several possible choices. In

the following, for simplicity, we first neglect the fluctuation of the growth rate α. Assume that the size at

birth is the only variable influencing cell division (g(·) is a function of δqi
0 only) will allow us to introduce a

linear-response framework. We will then describe how to consider the heterogeneity of multiple growth

parameters.

The main empirical observation that comes to our help is the fact that the coefficient of variation of qi
0

is small (typically around 0.15) [387, 395, 405, 402, 404]. The small value of the coefficient of variation

strongly suggests the possibility of Taylor-expanding the function g(δqi
0) around δqi

0 = 0 [405]. In this limit,

the function g(δqi
0) is approximately linear and the random variable ζi(δqi

0, α) can be well approximated

by a Gaussian random variable with zero mean and constant variance [404]. The resulting equation reads

δqi+1
0 = (1 − λ)δqi

0 + σξi , (C.2)

where ξi is a Gaussian random variable with zero mean and unit variance. The two parameters λ and

σ encode, respectively, the relevant information about the mechanism of size control and the level of

stochasticity. The parameter σ simply corresponds to ζi(0, α). The parameter λ, which quantifies the

strength of size control, has a direct relationship with the mechanism at its origin. It is defined as λ =
1 − g′(0, α). For instance, the sizer corresponds to λ = 1 and an adder to λ = 1/2. The case λ = 0 does

not lead to a stationary process and corresponds to a timer. Consequently, this parameter can easily be

inferred from the plots in Figure ??.

Eq. (C.2) can be solved analytically [404]. In particular one can show that the conditional probability of

observing a log-size deviation δqi
0 from the average at generation i given a deviation at generation 0, is a
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Gaussian with mean

〈δqi
0〉δq0

0
= (1 − λ)iδq0

0 . (C.3)

This result clearly shows how different mechanisms correspond to different strengths of cell-size home-

ostasis, leading to fluctuations persisting across a different number of generations. For a sizer, λ = 1, the
expected deviation of the daughter cell is independent of the mother cell fluctuations. A timer, with λ = 0,
does not lead to homeostasis, as the expected deviation of size at birth of a daughter cell is the same as

the deviation of themother. The adder, λ = 1/2, leads on average to a halving of the size at birth deviation
at each generation, as approximately observed in experiments [395].

One can generalize the linear-response framework to consider fluctuations of different growth parame-

ters [406]. In general, one can assume that the size at birth of the daughter cell depends on both size at

birth of the mother and her individual growth rate fluctuations.

δqi+1
0 = (1 − λqq)δqi

0 − λqαδα
i + ξi

q . (C.4)

Along the same lines, one can assume that the growth rate fluctuations obey a similar equation

δαi+1 = −λαqδq
i
0 − λααδα

i + ξi
α . (C.5)

This kind of equation can be written in multiple forms, i.e. including multiple variables. For example,

one can write an equation explicitly for the elongation rate between divisions δG := δqi+1
0 − δqi

0 or for

the division time. Since the linear-response equations assume that the fluctuations around the means

of these variables are small, all these choices turn out to be mathematically equivalent. This is also the

reason why the different plots in Figure ?? are equivalent. While a linear dependency of growth rate α and

division time τd on (log-)size at birth q0 would induce a non linear dependency of the elongation G = ατd

on the initial size, such non-linearities can be neglected in the limit of small fluctuations, leading always to

linear dependencies [405, 406].

The values of the parameters λab can be easily inferred using the standard tools of linear regression.

Notably, the best (maximum likelihood) estimates of these parameters can be directly obtained from the

variable covariances [404, 406]. For instance, 〈δqi+1δqi〉 = λqqσ
2
q + λqα〈δαiδqi〉. By writing the expressions

for other correlations (e.g., 〈δqi+1δαi〉 or 〈δαi+1δqi+1〉 ) one can map the coefficient λab with the measured

covariances.

C.2 Growth laws

Growth laws and trade-offs between protein sectors. Prototypical predictions are the so-called ”growth

laws”, general quantitative relationships linking proteome composition and rates of cellular processes.

The reason why relationships of the kind λ = λ(φR, φX , . . . ) and kX(φR, φX , . . . ) naturally emerge in the

framework is due to cell growth and division rates being coupled to proteome allocation dynamics.

Growth law for the ribosome sector. For example, the first growth law, stating that the ribosome mass

fraction increases linearly with the nutrient-imposed growth rate, that is λ = λ(φR) = K(φR − φmin
R ), is

obtained straightforwardly by noting that upon differentiation of Eq. (13.21) with respect to time and sub-

stitution of Eq. (13.19) and Eq. (13.20) one finds the dynamical relation λ(t) = knP (t)
M

, which at equilibrium

reads (neglecting degradation)

λ∗ = knP
∗

M
= aktR

∗fa

M
= akt

mR

Mprot

M

(
φR − φmin

R

)
, (C.6)

since at equilibrium the amino-acid import flux knP
∗ matches the biosynthesis flux aktR

∗fa (dA/dt = 0 in
absence of degradation). Note that we have used the definitions φi ≡ (miPi)/Mprot = (miPi)/(M − Ma)
and Rfa = Ractive = R−Rinactive and we have identified φinactive

R = φmin
R .

Trade-Offs between Ribosomes and Division Protein Synthesis. Following Refs. [441, 442], we re-write Eq. (C.6)
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as kn = akt
mR

mP
φR−φmin

R
φP

and use the constraint φmax
R = 1 − φQ = φR + φP + φX to obtain

φX = −Kn +Kt

Kn
φR + Ktφ

min
R +Knφ

max
R

Kn
, (C.7)

whereKn ≡ kn/mP ([Kn] = [T ]−1) andKt ≡ akt/mR ([Kt] = [T ]−1). Eq. (C.7) shows a negative correlation
between the ribosome and division sectors under nutrient or translational perturbations, in agreement

with recent published data [508]. Also, since the rates of growth and division protein synthesis are respec-

tively proportional to the ribosome and the division sector, this negative correlation reflects a trade-offs

between allocating ribosomal resources towards growth or division (see Fig.1F in Ref. [441]).

Growth law for the division sector. So, the larger the fraction of ribosomes making division proteins the

smaller the fraction of ribosomes making ribosomes. In other words, there is a negative correlation

between the growth rate and the division protein sector. Indeed, the ribosome sector is related to the

growth rate via the first growth law φR = Mλ
MprotKt

+ φmin
R , but it is also related to φX via Eq. (C.7) φR =

Ktφmin
R +Knφmax

R
Kn+Kt

− Kn
Kn+Kt

φX . Equating the two terms yields

λ = KnKt

Kn +Kt

Mprot

M

(
φmax

R − φmin
R − φX

)
, (C.8)

which is Eq. (9) in Ref. [441].

We now discuss how two known steady-growth size-related behaviors emerge in the unified framework

from the interplay between cell growth and cell division.

Adder mechanism. As we discussed, E. coli cells regulate their size by adding a constant volume between

consecutive cell divisions (adder mechanism). In a previous problem, we investigated with numerical sim-

ulations the range of validity of this property. In the following one, we instead show analytically that the

adder property is naturally embedded in the unified framework.

It can be seen then that whenever λ � dX/mX (e.g. fast growth conditions), ∆s1cycle ≈ λ
kX
Xth = const

which is the adder property. Notably, in increasingly slower growth conditions, where degradation be-

comes with the growth rate, deviations from the adder are predicted, up to the point λ � dX/mX where

sd ≈ XthdX/(kXmX) = const.

“Schaechter–Maaloe–Kjeldgaard” (SMK) growth law. According to this law, the population-averaged cel-

lular size scales with growth rate in an approximately exponential fashion [509]. Interestingly, deviations

from the exponential trend have recently been reported, particularly at slow growth, leading to a different

proposition [420]. Notably, deviations from this law are accounted in our framework. Indeed, in an ex-

ponentially expanding population the average cell size can be expressed as 〈s〉 = 2 log 2〈s0〉 [387], which,
combined with Eq. (13.27) and 〈sd〉 = 2〈s0〉 leads to

〈s〉 =
λ+ dX

mX

k̃X

(
2 − 2− dX

mX λ

) (C.9)

where, following Ref. [441], we have defined k̃X ≡ kX/(2 log 2Xth). Note that since λ ∝ φR and kX ∝ −φR

the average cell size increases with ribosome abundance, a trend observed in experiments. Notably, upon

determining the model parameters and making full explicit the growth rate dependence, the authors in

Ref. [441] with no further fitting showed that Eq. (C.9) recapitulates the experimental data [420, 441], a

remarkable achievement of the unified framework.

Non-steady relationships. Finally, we contextualize within the unified framework some predictions of a

model recently proposed to unify cell division and growth in non-steady growth conditions [433]. As we

saw, although there is consensus on an inter-division adder at the phenomenological level, the mech-

anisms regulating cell division dynamics in the bacterium E. coli are still widely debated. In particular

several mechanistic models based on different mechanisms for division control were proposed for the
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adder [427, 347, 418, 417]. In order to help selecting different scenarios, experiments beyond steady-state

growth help comparing the specific causal relationships underlying different models with data. Following

this philosophy, and aiming to shed more light on cell division dynamics, Panlilio et al. [433] ran multi-

ple long-term E. coli microfluidics experiments jointy monitoring size-division dynamics and reporters of

ribosomal and constitutive genes through nutritional up-shifts. The fluorescent reporters can be seen

as proxies for the dynamics of the R and P sectors during the shift. Remarkably, in their experiments

they observed highly-complex multiple-timescale dynamics in different cell-division variables (particularly

inter-division time, division rate, added volume and added-to-initial volume ratio) during the nutritional

up-shift. Notably, in spite of this complex dynamics, they found the division control strategy to be unaf-

fected by the shift. The transient observed division dynamics in their shift data falsifies several scenarios,

such as the Harris-Theoriot septum-limited division and the classic scenario of replication-limited division.

Instead, the authors found that a threshold accumulation model such as the one described by Eq. (13.19)

could not be falsified,
ds(t)
dt

= α(t)s(t) dN(t)
dt

= rX(t)s(t) . (C.10)

This the usual scenario where a constitutive X-sector protein accumulates to a threshold value N∗ and at

that point triggers cell division. The regulation of cell division from a constitutive sector is coherent with

the observation that ppGpp is a cell size and cell division regulator [510]. These results are also in line with

independent conclusions based on steady-state data [442, 418, 432] and isolate FtsZ as a likely candidate

cell-division trigger, although the previous section has clarified how the complexity of the decision to divide

is likely higher than described by the chromosome-agnostic cell-divisionmodels that are used in integrated

frameworks. Future efforts will have to integrate this complexity in a description that also accounts for

the interplay of different processes relevant for cell cycle progression with cell growth.
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Solutions to problems

D.1 Chapter “The inventory of a cell”

Problem 1 (Intuition for biological numbers)

Check the results at http://bionumbers.hms.harvard.edu, http://book.bionumbers.org/or https://doi.

org/10.1016/j.cell.2010.06.019.

Problem 2 (Proteins per cell - estimate one)

Proteins
mL = 0.2 g

mL · 6 · 1023 1
mol · 1

40000
mol

g = 3 · 1018 1
mL

Proteins
µm3 = 3 · 1018 1

mL · 10−12 mL
µm3 = 3 · 106 1

µm3

Proteins
cell ≈


3 · 106 E. coli

2 · 108 S. cerevisiae

9 · 109 mammalian cells

Problem 3 (Proteins/ribosomes per cell - estimate two)

109 · 0.3/25 ≈ 1.2 · 107 proteins

109 · 0.3/3400 ≈ 88000 ribosomes

Problem 4 (Buoyant cell density)

Density = 1 · 0.7 + 1.3 · 0.18 + 1.7 · 0.08 + 1 · 0.03 + 1.5 · 0.01 = 1.115

Problem 5 (Concentrations enzymes and substrates)

Concentration of one molecule per E. coli cell:

1
µm3 · 1015 µm3

L · 1
6 · 1023

mol
1 = 1.7 · 10−9 mol

L

Enzyme mass: 40 000 g mol−1 (BNID 105861)

Glucose mass: 180 g mol−1

40000/180 = 222

Assuming that the mass of the free enzyme and the mass of the substrate should be equal for optimal

flux, we need approximately 222 molecules of substrate (glucose) per one molecule of free enzyme. This
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corresponds to the following concentrations:

Enzyme: ∼ 1.7 nmol L−1

Substrate: ∼ 370 nmol L−1

Problem 6 (Cell size in different dimensions)

Cell 1 Cell 2 Ratio

Diameter 1 2 2

Surface area 3.14 12.57 4

Volume 0.52 4.19 8

SA/V 6 3 0.5

As the cell diameter increases, the volume grows faster than the surface area, leading to a decrease in

the surface area-to-volume ratio (SA/V). This decrease can impact nutrient uptake as there is less relative

surface area available for membrane transporters. Therefore, larger cells with lower SA/V ratios may face

challenges in obtaining enough nutrients to meet their metabolic demands.

Problem 7 (Alien lifeforms)

Wedo not know the answer to this question. These are ideas fromChatGPT (https://openai.com, GPT-3.5,

version 2023) – take them with a grain of salt:

When imagining alien lifeforms, it is difficult to make definitive statements about their nature since we

have no direct knowledge of extraterrestrial life. However, we can explore some possibilities and consider

the principles of biology and physics as we currently understand them.

1. Composition of cells. While cells are the fundamental building blocks of life on Earth, it is not certain

that extraterrestrial life would be composed of cells. Cells are a product of evolution on our planet and

are highly efficient structures for carrying out biological processes. However, alternative forms of life may

exist with entirely different structures and organization. For example, hypothetical non-cellular life forms

based on self-replicating molecules or other complex arrangements have been proposed.

2. Different features of alien cells. (a) Membranes: While cells on Earth have lipid bilayer membranes,

it is conceivable that alien life forms might have different membrane compositions. For example, they

could have membranes composed of different molecules or organized in alternative ways. (b) Genetic

Material: On Earth, DNA and RNA are the primary carriers of genetic information. However, it is possible

that alternative genetic molecules or information storage systems could exist in alien life. These could

have different base pairs or use different coding mechanisms. (c) Metabolism: Alien life could have dif-

ferent metabolic processes compared to Earth organisms. They might utilize different energy sources,

employ unique enzymatic reactions, or even rely on completely novel biochemical pathways. (d) Size and

Structure: Cells on Earth exhibit a wide range of sizes, frommicroscopic bacteria to the largest known cells

in organisms like ostrich eggs. It is conceivable that alien cells could differ significantly in size and overall

structure, depending on the specific conditions and evolutionary paths of their respective environments.

3. Features dictated by physics. Certain fundamental principles of physics are likely to impose constraints

on the functioning and structure of any kind of cell, including potential alien cells. These features include:

(a) Biochemistry: Regardless of the specific molecular composition, alien cells would need a biochemistry

that allows for the storage and utilization of energy, the replication and expression of genetic information,

and the maintenance of internal equilibrium. (b) Thermodynamics: The laws of thermodynamics, such as

energy conservation and entropy increase, are universal physical principles. Any living system, including

alien cells, would need to adhere to these principles to maintain their internal processes. (c) Water: Water

is a highly abundant molecule and a fundamental solvent for life on Earth. It provides a medium for

biochemical reactions and allows for efficient transport of molecules within cells. It is possible that water

or another suitable liquid would be essential for alien life, but alternative solvents cannot be ruled out

entirely.

https://openai.com
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While these considerations provide a starting point for thinking about alien life, the possibilities are vast,

and it is challenging to predict the specific characteristics of extraterrestrial organisms. Future discoveries

and investigations in astrobiology will help refine our understanding of life beyond Earth.

Problem 8 (Substrate demand to saturate an enzyme) Take the irreversible Michaelis-Menten law, and

plug in v = 0.1 × vmax and v = 0.9 × vmax. By rearranging the terms to express S in terms of KM, the

answers are S0.1 = 0.1
0.9KM ≈ 0.11KM and S0.9 = 0.9

0.1KM = 9KM. This is approx. 81-fold difference to go

from 0.1 × vmax to 0.9 × vmax!

D.2 Chapter “Cell metabolism”

Problem 1 (An irreversible reaction with simultaneous binding)

(a)

E + S1 + S2
k1−−⇀↽−−k2

ES1S2
k3−−→ E + P1 + P2 (D.1)

(b)
dp

dt
= k3

s1s2C

s1s2 + k2+k3
k1

, (D.2)

where p = [P1 + P2] and C = [E] + [ES1S2].

Problem 2 (A reversible reaction with simultaneous binding)

(a)

E + S1 + S2
k1−−⇀↽−−k2

ES1S2
k3−−⇀↽−−k4

E + P1 + P2 (D.3)

(b)

dp
dt = k3

C(s1s2 − k2k4
k1k3

p)
s1s2 + k4

k1
p+ k2+k3

k1

(D.4)

where p = [P1 + P2] and C = [E] + [ES1S2].

Problem 3 (An irreversible reaction with sequential binding)

(a)

E + S1
k1−−⇀↽−−k2

ES1

ES1 + S2
k3−−⇀↽−−k4

ES1S2
k5−−→ E + P1 + P2 (D.5)

(b)
dp
dt = k5

s1s2C

s1s2 + s1
k4+k5

k3
+ s2

k5
k3

+ k2
k1k3

(k1 + k5)
, (D.6)

where p = [P1 + P2] and C = [E] + [ES1] + [ES1S2]

Problem 4 (An irreversible reaction with random-order binding)

(a)

E + S1
k1−−⇀↽−−k2

ES1

ES1 + S2
k3−−⇀↽−−k4

ES1S2

E + S2
k5−−⇀↽−−k6

ES2

ES2 + S1
k7−−⇀↽−−k8

ES1S2

ES1S2
k9−−→ E + P1 + P2 (D.7)
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(b)

dp
dt = k9

Cs1s2
(
k1k3(k6 + k7s1) + k5k7(k2 + k3s2)

)
s1A(s1) + s2B(s2) + s1s2C(s1, s2) +D

(D.8)

where p = [P1 + P2], C = [E] + [ES1] + [ES2] + [ES1S2], and

A(s1) = k1k6(k4 + k8 + k9) + k7(k0 + k4)(k2 + k1s1)

B(s2) = k2k5(k4 + k8 + k9) + k3(k0 + k8)(k6 + k5s2)

C(s1, s2) = k1k3(k6 + k8 + k7s1) + k5k7(k2 + k4 + k3s2) + k3k7k9

D = k2k6(k4 + k8 + k9)

D.3 Chapter “Metabolic flux distributions”

Problem 4.4 (Elementary Flux Modes (2))

EFMs containing forward fluxes only:

1 3/4
A B

C

D
1 5/4

A B

C

D A B

C

D
1/21

EFMs containing forward and backward fluxes:

1

13/2

2/3

1

2

1

1

A B

C

D

3/2

A B

C

A B

C

DA B

C

D D

A

C

B D

2

A

C

B D
1

2

A

C

B D
5/41

A B

C

D

D.4 Chapter “The enzyme cost of metabolic fluxes”

Problem 6.9 (Haldane kinetic rate law)

First, we add the constraint on the total enzyme concentration ([E] + [ES] + [EP ] = Etot) and rewrite the

ODE system in matrix notation:
1 1 1

[S]k1 −(k2 + k3) k4

[P ]k6 k3 −(k4 + k5)
−[S]k1 − [P ]k6 k2 k5


 [E]

[ES]
[EP ]

 =


[E0]

0
0
0

 . (D.9)

Note that the last row is linearly dependent on the two previous ones (it is minus their sum). Therefore,

we can drop it from the system without loosing information. Then, we will find exlicit expressions for [E],
[ES], and [EP ] by using Gaussian elimination – a process of eliminating off-diagonal values in the matrix

until we reach the identity matrix, while at the same time applying the same operations to the vector on

the right-hand side of the equality.

Step 1, elimination the off-diagonal elements on the first column (subtracting the first row times [S]k1 from
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the 2nd row and the first row times [P ]k6 from the 3rd row)1 1 1
0 −(k2 + k3) − [S]k1 k4 − [S]k1

0 k3 − [P ]k6 −(k4 + k5) − [P ]k6


 [E]

[ES]
[EP ]

 = [Etot]

 1
−[S]k1

−[P ]k6

 .

Step 2, dividing the second row by −(k2 + k3 + [S]k1) to have 1 on the diagonal:1 1 1
0 1 [S]k1−k4

k2+k3+[S]k1

0 k3 − [P ]k6 −(k4 + k5) − [P ]k6


 [E]

[ES]
[EP ]

 = [Etot]

 1
[S]k1

k2+k3+[S]k1

−[P ]k6

 .

Step 3, subtracting the second row from the 1st, and again from the 3rd (after multiplying by k3 − [P ]k6):1 0 1 − [S]k1−k4
k2+k3+[S]k1

0 1 [S]k1−k4
k2+k3+[S]k1

0 0 −(k4 + k5) − [P ]k6 − ([S]k1−k4)(k3−[P ]k6)
k2+k3+[S]k1


 [E]

[ES]
[EP ]

 = [Etot]

 1 − [S]k1
k2+k3+[S]k1

[S]k1
k2+k3+[S]k1

−[P ]k6 − [S]k1(k3−[P ]k6)
k2+k3+[S]k1

 .

which after simplifying becomes:1 0 k2+k3+k4
k2+k3+[S]k1

0 1 [S]k1−k4
k2+k3+[S]k1

0 0 − [S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
k2+k3+[S]k1


 [E]

[ES]
[EP ]

 = [Etot]


k2+k3

k2+k3+[S]k1
[S]k1

k2+k3+[S]k1

− [P ]k6k2+[P ]k6k3+[S]k1k3
k2+k3+[S]k1

 .

and we normalize the last row to have 1 on the diagonal:1 0 k2+k3+k4
k2+k3+[S]k1

0 1 [S]k1−k4
k2+k3+[S]k1

0 0 1


 [E]

[ES]
[EP ]

 = [Etot]


k2+k3

k2+k3+[S]k1
[S]k1

k2+k3+[S]k1
[P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5

 .

Step 4, we eliminate the off-diagonal values of the third column using the 3rd row:1 0 0
0 1 0
0 0 1


 [E]

[ES]
[EP ]

 = [Etot]


k2+k3

k2+k3+[S]k1
− k2+k3+k4

k2+k3+[S]k1
· [P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
[S]k1

k2+k3+[S]k1
− [S]k1−k4

k2+k3+[S]k1
· [P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
[P ]k6k2+[P ]k6k3+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5


Simplifying the expressions on the right-hand side is a lengthy process (which we do not show here) and

in the end we get:1 0 0
0 1 0
0 0 1


 [E]

[ES]
[EP ]

 = [Etot]


k2k4+k2k5+k3k5

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
[P ]k4k6+[S]k1k4+[S]k1k5

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5
[P ]k2k6+[P ]k3k6+[S]k1k3

[S]k1(k3+k4+k5)+[P ]k6(k2+k3+k4)+k2k4+k2k5+k3k5


Therefore,

[E] = [Etot]
k2k4 + k2k5 + k3k5

[S]k1(k3 + k4 + k5) + [P ]k6(k2 + k3 + k4) + k2k4 + k2k5 + k3k5
(D.10)

[ES] = [Etot]
[P ]k4k6 + [S]k1k4 + [S]k1k5

[S]k1(k3 + k4 + k5) + [P ]k6(k2 + k3 + k4) + k2k4 + k2k5 + k3k5
(D.11)

[EP ] = [Etot]
[P ]k2k6 + [P ]k3k6 + [S]k1k3

[S]k1(k3 + k4 + k5) + [P ]k6(k2 + k3 + k4) + k2k4 + k2k5 + k3k5
(D.12)
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